FritoTaco
- 132
- 23
Homework Statement
Hello,
I need help finding the derivative. The question wants me to find the equation of the tangent line to the curve
y=\dfrac{6}{1+e^{-x}} at point (0, 3). I'm unclear on when to use the chain rule at certain areas.
Homework Equations
Product Rule: f(x)g'(x)+f'(x)g(x)
Quotient Rule: \dfrac{g(x)f'(x)-g'(x)f(x)}{(g(x))^2}
Chain Rule:
if y=g(f(x))
then \dfrac{dy}{dx}=g'(f(x))\cdot f'(x)
or
if y=g(u) and u=f(x)
then \dfrac{dy}{dx}=\dfrac{dy}{du}\cdot\dfrac{du}{dx}
The Attempt at a Solution
Quotient
y=\dfrac{6}{1+e^{-x}}
y'=\dfrac{(1+e^{-x})(6)'-(1+e^{-x})'(6)}{(1+e^{-x})^2}
y'=\dfrac{(1+e^{-x})(0)-(1+e^{-x})(-e^{-x})(6)}{(1+e^{-x})^2} Used chain rule here for -(1+e^{-x})
y'=\dfrac{-(1+e^{-x})-6(-e^{-x})}{(1+e^{-x})^2}
y'=\dfrac{-(1+e^{0})-6(-e^{0})}{(1+e^{0})^2}
y'=1
Book Answer:
y=\dfrac{6}{(1+e^{-x})}
y'=\dfrac{(1+e^{-x})(0)-6(-e^{-x})}{(1+e^{-x})^2}
y'=\dfrac{6(e^{-x})}{(1+e^{-x})^2}
y'=\dfrac{6(e^{0})}{(1+e^{-x})^2}
y'=\dfrac{6(1)}{(1+1)^2}
y'=\dfrac{6}{2^2}
y'=\dfrac{3}{2}
y=\dfrac{3}{2}x+3
Everything goes terribly wrong for me when I use the chain rule. Also, at then end, why didn't they square the denominator?