Derivative of e^(1+lnx): Solving for y

  • Thread starter Thread starter Juwad
  • Start date Start date
  • Tags Tags
    Derivative
Juwad
Messages
33
Reaction score
0
hello,

i need some assistance on this problem:

y = e^(1+lnx)

1st. I brought down the (1+lnx) by using natural log on both sides.

lny*y'=(1+lnx)*lne
y'/y=(1/x)*1

y'=e^(1+lnx)*(1/x)

what do i do next?
 
Physics news on Phys.org
e^{1+\ln x}=e^1e^{\ln x}=ex
 
thanks,!:-p
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top