lamerali
- 62
- 0
Hi, I'm working with finding the derivatives of functions, which I'm not very comfortable with; if someone could please check my answers to the following questions i would be VERY grateful! Thank you! :)
find the derivative of the following function:
Question 1:
y = \frac{ 2^{x} }{ e^{x} }
My Answer
y1 = \frac{ e^{x} . ln2 . 2^{x} + 2^{x} . e^{x} }{ e^{x}^{2} }
= \frac{ 2^{x} (ln2 + 1) }{ e^{x} }
Question 2:
f(x) = 2x ln(x^{2} + 5)
My answer
f ^{1} (x) = 2ln(x^{2} + 5) + (2x) . \frac{1}{x^{2} + 5} . (2x)
= 2 ln(x^{2} + 5) + \frac{4x^{2}}{x^{2} + 5}
Question 3:
g(x) = \frac{ln x}{e^{x}^{2} + 2}
My answer:
g^{1}(x) = \frac{(e^{x}^{2} + 2) . (1/x) - lnx . 2xe^{x}^{2}}{(e^{x}^{2} + 2)^{2}}
= \frac{\frac{e^{x}^{2} + 2}{x} - lnx . 2xe^{x}^{2}}{(e^{x}^{2} + 2)^{2}}
for the last two questions I'm not sure if i simplified enough...if anyone could guide me in the right direction where needed i'd really appreciate it! thanks in advance!
find the derivative of the following function:
Question 1:
y = \frac{ 2^{x} }{ e^{x} }
My Answer
y1 = \frac{ e^{x} . ln2 . 2^{x} + 2^{x} . e^{x} }{ e^{x}^{2} }
= \frac{ 2^{x} (ln2 + 1) }{ e^{x} }
Question 2:
f(x) = 2x ln(x^{2} + 5)
My answer
f ^{1} (x) = 2ln(x^{2} + 5) + (2x) . \frac{1}{x^{2} + 5} . (2x)
= 2 ln(x^{2} + 5) + \frac{4x^{2}}{x^{2} + 5}
Question 3:
g(x) = \frac{ln x}{e^{x}^{2} + 2}
My answer:
g^{1}(x) = \frac{(e^{x}^{2} + 2) . (1/x) - lnx . 2xe^{x}^{2}}{(e^{x}^{2} + 2)^{2}}
= \frac{\frac{e^{x}^{2} + 2}{x} - lnx . 2xe^{x}^{2}}{(e^{x}^{2} + 2)^{2}}
for the last two questions I'm not sure if i simplified enough...if anyone could guide me in the right direction where needed i'd really appreciate it! thanks in advance!