MHB Finding the Distance Between Buoys: A Cruise Ship Balcony Problem

  • Thread starter Thread starter mathdrama
  • Start date Start date
  • Tags Tags
    Ship
AI Thread Summary
The problem involves calculating the distance between two buoys observed from a cruise ship balcony 25m above sea level. The first buoy is directly east at a 32° angle of depression, while the second buoy is 65° south of east at a 40° angle of depression. The Law of Sines and the Law of Cosines are recommended for finding the distances to each buoy and the distance between them. It's emphasized that using exact values in calculations until the final step is crucial to avoid compounding rounding errors. The final calculated distance between the buoys is approximately 38.48 meters.
mathdrama
Messages
20
Reaction score
0
Not really sure how to do this problem. I'm not even sure where the angles are.

5. The balcony of a cruise ship is 25m above sea level. A person standing on the balcony sees two buoy’s in the water below. The first buoy is situated directly east of her at an angle of depression of 32°. The second buoy is situated 65° south of east at an angle of depression of 40°. Find the distance (x) between the two buoys (B1 and B2) .
 

Attachments

Mathematics news on Phys.org
I would begin by drawing a sketch:

View attachment 2514

Now, you can use the Law of Sines to find $d_1$ and $d_2$, and then the Law of Cosines to find $d$, the distance between the buoys.

edit: You could also consider using the tangent function to find $d_1$ and $d_2$.
 

Attachments

  • buoys.jpg
    buoys.jpg
    7.2 KB · Views: 107
MarkFL said:
I would begin by drawing a sketch:

View attachment 2514

Now, you can use the Law of Sines to find $d_1$ and $d_2$, and then the Law of Cosines to find $d$, the distance between the buoys.

edit: You could also consider using the tangent function to find $d_1$ and $d_2$.

Are attachments acceptable or would LaTex still be more convenient?

Could you kindly help me check my work?
 

Attachments

Posting your work here rather than attaching it is much more convenient for those looking at your work.

One issue I have with what you have done, and it is certainly something I have seen many students do, is using rounded values in your computations. It is better to use exact values until the very end, and only then use a decimal approximation is so desired. Errors from rounding can become compounded if used in intermediary steps.

This is how I would work the problem:

$$d_1=25\cot\left(32^{\circ}\right)$$

$$d_2=25\cot\left(40^{\circ}\right)$$

Now use the Law of Cosines:

$$d^2=25^2\cot^2\left(32^{\circ}\right)+25^2\cot^2\left(40^{\circ}\right)-2\cdot25^2\cot\left(32^{\circ}\right)\cot\left(40^{\circ}\right)\cos\left(65^{\circ}\right)$$

$$d=25\sqrt{\cot^2\left(32^{\circ}\right)+\cot^2\left(40^{\circ}\right)-2\cot\left(32^{\circ}\right)\cot\left(40^{\circ}\right)\cos\left(65^{\circ}\right)}\approx38.4813948\text{ m}$$

You see, using rounded values caused you to round up when the true value should be rounded down. Other than this issue though, your method was correct.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top