MHB Finding the Domain of a Function

  • Thread starter Thread starter megacat8921
  • Start date Start date
  • Tags Tags
    Domain Function
megacat8921
Messages
8
Reaction score
0
How do you find the Domain of \sqrt{(x^2 + 4)/(x^2 - 4)} ?
 
Mathematics news on Phys.org
megacat8921 said:
How do you find the Domain of \sqrt{(x^2 + 4)/(x^2 - 4)} ?

What restrictions are implied by a square root? What restrictions are implied by a fraction?
 
Prove It said:
What restrictions are implied by a square root? What restrictions are implied by a fraction?

There cannot be a negative number under the square root and a fraction cannot have zero as a denominator. Knowing that, I still cannot figure out what steps to take to figure the problem out.
 
megacat8921 said:
There cannot be a negative number under the square root and a fraction cannot have zero as a denominator. Knowing that, I still cannot figure out what steps to take to figure the problem out.

That's EXACTLY what you need!

What values of x will give a zero denominator?

What values of x will give something negative under the square root?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top