Finding the Laplace transform of a piecewise function

  • Thread starter Thread starter Another
  • Start date Start date
  • Tags Tags
    Integration
Another
Messages
104
Reaction score
5

Homework Statement


##f(t) = -e^{-t}## ; ## t ≤ 0## and ##f(t) = 0## ;## t > 0 ## find Laplace transform this function.

Homework Equations


Laplace transform
##F(s) = \int_{[-∞<r<+∞]} f(t) e^{-st} dt##

The Attempt at a Solution


##F(s) = \int_{[-∞<r<0]} -e^{-t} e^{-st} dt +\int_{[0<r<+∞]} (0) e^{-st} dt ##
##F(s) = \int- e^{-(s+1)t} dt + 0## ,[-∞<r<0]
##F(s) = \frac{1}{s+1}[e^{-(s+1)t}]##

##e^{-(s+1)(0)}=1## when t = 0
##e^{-(s+1)t}= 0 ## when t = -∞ I'm not sure because t≤0 . when take -∞ to ##e^{-(s+1)t} = e^{-∞} = 0##

please check my solution
 
Physics news on Phys.org
Another said:

Homework Statement


##f(t) = -e^{-t}## ; ## t ≤ 0## and ##f(t) = 0## ;## t > 0 ## find Laplace transform this function.

Homework Equations


Laplace transform
##F(s) = \int_{[-∞<r<+∞]} f(t) e^{-st} dt##

The Attempt at a Solution


##F(s) = \int_{[-∞<r<0]} -e^{-t} e^{-st} dt +\int_{[0<r<+∞]} (0) e^{-st} dt ##
##F(s) = \int- e^{-(s+1)t} dt + 0## ,[-∞<r<0]
##F(s) = \frac{1}{s+1}[e^{-(s+1)t}]##

##e^{-(s+1)(0)}=1## when t = 0
##e^{-(s+1)t}= 0 ## when t = -∞ I'm not sure because t≤0 . when take -∞ to ##e^{-(s+1)t} = e^{-∞} = 0##

please check my solution

If ##s < -1## you get ##F(s) = 1/(s+1)##. When ##s \geq -1## the Laplace integral diverges.
 
  • Like
Likes Another
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top