MHB Finding the LCM of two expressions

  • Thread starter Thread starter zolton5971
  • Start date Start date
  • Tags Tags
    Expressions
AI Thread Summary
To find the least common denominator (LCD) of the expressions 3(2x-2) and x(5x-5), it's essential to factor each expression. The correct LCD involves identifying the highest powers of each factor present in both expressions. After simplifying, the expressions can be represented as 6(x-1) and 5x(x-1). The final LCD can be calculated by multiplying these factors together, ensuring all variables and polynomials are treated as prime factors in the process.
zolton5971
Messages
25
Reaction score
0
Find the least common denominator of 3(2x-2) and x(5x-)5

I wanted to double check this, I got 10 as an answer? If not how would you get the LCD?

.
 
Mathematics news on Phys.org
zolton5971 said:
Find the least common denominator of 3(2x-2) and x(5x-)5

I wanted to double check this, I got 10 as an answer? If not how would you get the LCD?

.

Do you mean $$x(5x-5)$$? You're answer should include $$x$$ somewhere

The lowest common multiple (LCM) is given by splitting each term into prime factors and multiplying by the highest power of each prime factor. For example to find the LCM of 10 and 15 (it's 30) you'd do

$$10 = 2 \times 5 \text{ and }\ 15 = 3 \times 5[/math] so the LCM is given by $$2 \times 3 \times 5 = 30$$

You can do the same with algebraic fractions but remember to treat any polynomials or variables as prime - after simplifying you have $$6(x-1)$$ and $$5x(x-1)$$

Can you use the method above to find the LCM?
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
1K
Replies
3
Views
2K
Replies
4
Views
3K
Replies
3
Views
999
Replies
10
Views
2K
Replies
4
Views
2K
Back
Top