Finding the Limit of (1+x+x^2) as x Approaches 0

  • Thread starter Thread starter helpme7
  • Start date Start date
  • Tags Tags
    Limit
helpme7
Messages
1
Reaction score
0
closed.
 
Last edited:
Physics news on Phys.org
Within a set of parentheses, you will have

1+x+x^2. The limit of this as x--> 0 is 1.

You then have

((1)^(1/x)-e)

One to any power is still one, so

1-e
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top