MHB Finding the Minimum Number of White Balls in a Container with 27 Balls

AI Thread Summary
The discussion revolves around determining the minimum number of white balls in a container of 27 balls, ensuring the probability of drawing two black balls without replacement is less than 23/30. Clarification was sought regarding the phrasing of the drawing process, specifically whether it referred to drawing two white balls. The probability calculations involve using the number of white balls, denoted as "n," and setting up an inequality to solve for n. The correct approach involves calculating the probability of drawing two white balls and comparing it to the specified threshold. The exercise was corrected for clarity based on feedback received.
ghostfirefox
Messages
11
Reaction score
0
We have 27 balls in the container, some of which are white and some black. How many white balls in the container must be at least, so that the probability that two black balls were drawn at random without a return was less than 23/30?
 
Last edited:
Mathematics news on Phys.org
ghostfirefox said:
We have 27 balls in the container, some of which are white and some black. How many white balls in the container must be at least, so that the probability that two balls were drawn at random without a draw was less than 23/30?

What?? "Two balls are drawn at random without a draw"?? What does that mean? Did you mean "two white balls are drawn without a black ball being drawn"? Is this drawing without replacement? If so let "n" be the number of white balls in the container. The probability the first ball drawn is white is n/27. If that happens there are 26 balls left in the container, n-1 of them white. The probability the second ball drawn is also white is (n-1)/26. The probability both balls are white is [n(n-1)]/702. You want to solve the inequality (n^2- n)/702< 23/30.
 
You're right a I missed a word. I corrected the exercise. Thank for your response.
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top