Finding the normal modes for a oscillating system

skeer
Messages
17
Reaction score
0

Homework Statement


The system is conformed by two blocks with masses m (on the left) and M (on the right), and two springs on the left/right has the spring constant of k. The middle spring has a spring constant of 4k. Friction and air resistance can be ignored. All springs are massless.
Find the normal modes.
Diagram:
|~m~~~~M~|

Homework Equations


##L = T-V ##[/B]
##T = \frac{1}{2}(m\dot{x}_1^2 + M\dot{x}_2^2) ##
##V = \frac{1}{2}[(x_1^2 + x_2^2) + 4(x_1-x_2)^2]##
##\frac{\partial{L}}{\partial{x_k}} - \frac{d}{dt} \frac{\partial{L}}{\partial{\dot{x_k}}} = 0##
##[A_{ij} - \omega^2 m_{ij}]=0##

The Attempt at a Solution


I have tried to guess a solution for the normal modes but of the for ##\eta_1 = x_1 - x_2 ## and ##\eta_2= x_1+x_2## but I does not works. I have tried to add some arbitrary coefficient to ##\eta_1## & ## \eta_2## unsuccessfully. Trying to find the eigenvectors is a pain in the neck since the eigenfrequencies are:##\omega^2 = \frac{5k(M+m) \pm k\sqrt{25(M^2+m^2) -14Mm}}{2Mm}##.
I read in a textbook that one could find the coefficient for the etas by knowing that the ratios ##\frac{M_{11}}{M_{22}}=\frac{A_{11}}{A_{22}}=\alpha^2## but for this case the first ratio is ##\frac{m}{M}## and the second is 1 .Therefore, this method doesn't help me :/.

I would appreciate any contribution. Thank you.
 
Physics news on Phys.org
Do you have to solve this problem using the Lagrangian?
 
The Lagragian is not necessary, but is the only method I know. I believe that if I use forces the problem would complicate more.
 
I think the force method is easier but the results are the same.

I get a slightly different answer for the Eigen values but even then I think you could probably simplify it a little bit:
ω2 = k(1/M+1/m) [5/2± √(25/4+16/(M/m+m/M+2))]

I am not aware of any other method except plugging the Eigen values into the equations of motion and solving for the mode shapes.
 
Duplicate post.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top