Finding the Normalization Constant for a Wave Function with Given Parameters

PhyzicsOfHockey
Messages
41
Reaction score
0

Homework Statement




The wave function of a particle is Y(x,t) = A e^-kx*e^-iwt for x greater than or equal too 0, and it is zero everywhere else. What is the numerical value of the normalization constant A for k=5.55 1/nm and w =7.19 1/ps?

Homework Equations



intergral Y^2=1


The Attempt at a Solution



I tried setting x=0 so my equation becomes Y(0,t)= A*e^-iwt
I then squared the equation A^2*intergral of e^2(-iwt)

I don't know where to go from here can someone help?
 
Physics news on Phys.org
More correctly, it's integral of Y times complex conjugate Y. So the time dependence drops out. The remaining x integral is not that challenging, is it?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top