jonroberts74
- 189
- 0
1^3+2^3+...+n^3 = \left[ \frac{n(n+1)}{2}\right]^2; n\ge 1
P(1) = 1^3 = \frac{8}{8} = 1
P(k) = 1^3+...+k^3 = \left[ \frac{k(k+1)}{2}\right]^2 (induction hypothesis)
P(k+1) = 1^3+...+k^3+(k+1)^3 = \left[\frac{(k+1)(k+2)}{2}\right]^2
I start getting stuck here
I foiled it out then let m = P(k)
\left[ m + \frac{2(k+1)}{2}\right]^2
P(1) = 1^3 = \frac{8}{8} = 1
P(k) = 1^3+...+k^3 = \left[ \frac{k(k+1)}{2}\right]^2 (induction hypothesis)
P(k+1) = 1^3+...+k^3+(k+1)^3 = \left[\frac{(k+1)(k+2)}{2}\right]^2
I start getting stuck here
I foiled it out then let m = P(k)
\left[ m + \frac{2(k+1)}{2}\right]^2
Last edited: