Finding the sum of 1^3 + 2^3 + + n^3 by induction

  • Thread starter Thread starter jonroberts74
  • Start date Start date
  • Tags Tags
    Induction Sum
jonroberts74
Messages
189
Reaction score
0
1^3+2^3+...+n^3 = \left[ \frac{n(n+1)}{2}\right]^2; n\ge 1

P(1) = 1^3 = \frac{8}{8} = 1

P(k) = 1^3+...+k^3 = \left[ \frac{k(k+1)}{2}\right]^2 (induction hypothesis)

P(k+1) = 1^3+...+k^3+(k+1)^3 = \left[\frac{(k+1)(k+2)}{2}\right]^2

I start getting stuck here
I foiled it out then let m = P(k)

\left[ m + \frac{2(k+1)}{2}\right]^2
 
Last edited:
Physics news on Phys.org
You probably meant ##m = \sqrt{P(k)}##. Now expand the square and use the induction hypothesis.
 
You assume that P(k) = 1^3+...+k^3 = \left[ \frac{k(k+1)}{2}\right]^2 To get P(k+1), you have to add (k+1)^3 to P(k). P(k+1)=P(k)+(k+1)^3=\left[ \frac{k(k+1)}{2}\right]^2+(k+1)^3 Write it out, and show that it is equal to P(k+1) = \left[ \frac{(k+1)(k+2)}{2}\right]^2
pull out (k+1)2

ehild
 
ehild said:
You assume that P(k) = 1^3+...+k^3 = \left[ \frac{k(k+1)}{2}\right]^2 To get P(k+1), you have to add (k+1)^3 to P(k). P(k+1)=P(k)+(k+1)^3=\left[ \frac{k(k+1)}{2}\right]^2+(k+1)^3 Write it out, and show that it is equal to P(k+1) = \left[ \frac{(k+1)(k+2)}{2}\right]^2
pull out (k+1)2

ehild
\left[\frac{(k+1)(k+2)}{2}\right]^2 = \left[ \frac{k(k+1)}{2}\right]^2+(k+1)^3

(k+1)^2 \left[\frac{(k+2)}{2}\right]^2=(k+1)^2\left[\frac{k^2}{2^2} + (k+1)\right]

(k+1)^2 \left[\frac{(k+2)}{2}\right]^2=(k+1)^2\left[\frac{k^2+4k+4}{2^2}\right]

(k+1)^2 \left[\frac{(k+2)}{2}\right]^2=(k+1)^2\left[\frac{(k+2)^2}{2^2}\right]

?
 
jonroberts74 said:
\left[\frac{(k+1)(k+2)}{2}\right]^2 = \left[ \frac{k(k+1)}{2}\right]^2+(k+1)^3

(k+1)^2 \left[\frac{(k+2)}{2}\right]^2=(k+1)^2\left[\frac{k^2}{2^2} + (k+1)\right]

(k+1)^2 \left[\frac{(k+2)}{2}\right]^2=(k+1)^2\left[\frac{k^2+4k+4}{2^2}\right]

(k+1)^2 \left[\frac{(k+2)}{2}\right]^2=(k+1)^2\left[\frac{(k+2)^2}{2^2}\right]

?

Apply that a2b2=(ab)2

(k+1)^2 \left[\frac{(k+2)}{2}\right]^2=\left[(k+1)\frac{(k+2)}{2}\right]^2= P(k+1)

is it familiar? Is it what you wanted to arrive at?


ehild
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top