It comes from the equation you should be already familiar with, namely, Fd = 1/2*rho*v2*Cd*A.
At first approximation, 1/2, rho, Cd, and A are all constant, so it simplifies down to Fd = some constant * v2.
Now, for this, you probably have to account for varying air density, so it would be good if you could look up an atmosphere model (or better still, if you know the temperature that day, a temperature corrected atmosphere model), and then you'll want to basically try to fit your deceleration data to a model using this formula, with 1/2 (obviously), rho (from your atmosphere model), A (from whatever your chosen reference area is), and v2 all known (you know v from your data, which incidentally you should use accelerometer based speed rather than baro based speed if possible, it's much more accurate), and thus you can solve for Cd.
You know Fd because you know the burnout mass of your rocket and you had an accelerometer onboard, though you're going to (at least in my experience) have issues getting any kind of accurate data below a few hundred mph because you start getting limited by accelerometer discretization at that point. Because of this, you can rearrange your equation to Cd = Fd/(1/2*rho*v2*A), and then just solve for your Cd vs V curve.
(Also, the Raven is a great little altimeter, so I'm glad to hear you're using it)