Treadstone 71
- 275
- 0
\mathbf{F}(x,y,z)=(x^2+yz,y^2+zx,-2z(x+y)) Find the vector potential.
A vector potential \mathbf{V} would have to satisfy
\mathbf{V}_x=x^2+yz
\mathbf{V}_y=y^2+zx
\mathbf{V}_z=-2z(x+y)
So,
\mathbf{V}=\frac{x^3}{3}+xyz+M(y)+N(z)
\Rightarrow \mathbf{V}_y=zx+M_y(y)
\Rightarrow M_y(y)=y^2
\Rightarrow \mathbf{V}=\frac{x^3}{3}+xyz+\frac{y^3}{3}+N(z)
\Rightarrow \mathbf{V}_z=xy+N_z(z)
However, here I can't find N_z(z).
A vector potential \mathbf{V} would have to satisfy
\mathbf{V}_x=x^2+yz
\mathbf{V}_y=y^2+zx
\mathbf{V}_z=-2z(x+y)
So,
\mathbf{V}=\frac{x^3}{3}+xyz+M(y)+N(z)
\Rightarrow \mathbf{V}_y=zx+M_y(y)
\Rightarrow M_y(y)=y^2
\Rightarrow \mathbf{V}=\frac{x^3}{3}+xyz+\frac{y^3}{3}+N(z)
\Rightarrow \mathbf{V}_z=xy+N_z(z)
However, here I can't find N_z(z).