bomba923
- 759
- 0
(Wow...it's been over three months since I posted anything...
)
Anyhow,
Given continuous functions
\begin{gathered}<br /> f_1 :\left[ {a,b} \right] \to \mathbb{R}^3 \hfill \\<br /> \vdots \hfill \\<br /> f_n :\left[ {a,b} \right] \to \mathbb{R}^3 \hfill \\ <br /> \end{gathered}
for which
\exists g:\left[ {a,b} \right] \to \mathbb{R}^3 {\text{ such that }}f_1 \cdot g = \cdots = f_n \cdot g
define \forall t \in \left[ {a,b} \right]
R_t = \left\{ {\left( {x,y,z} \right)\left| {\left( {x,y,z} \right) \cdot g = f_1 \cdot g} \right.} \right\} \cap
\bigcup\limits_{\begin{subarray}{l} <br /> j < k < m \leqslant n, \\ <br /> \left( {j,k,m} \right) \in \mathbb{N}^3 <br /> \end{subarray}} {\left\{ {\left( {x,y,z} \right)\left| \begin{gathered}<br /> \left( {y - y_j } \right)\left( {x_j - x_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_k } & {y_j - y_k } \\<br /> {x_j - x_m } & {y_j - y_m } \\<br /> <br /> \end{array} } \right| \leqslant \left( {x - x_j } \right)\left( {y_j - y_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_k } & {y_j - y_k } \\<br /> {x_j - x_m } & {y_j - y_m } \\<br /> <br /> \end{array} } \right| \wedge \hfill \\<br /> \left( {y - y_j } \right)\left( {x_j - x_m } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_m } & {y_j - y_m } \\<br /> {x_j - x_k } & {y_j - y_k } \\<br /> <br /> \end{array} } \right| \leqslant \left( {x - x_j } \right)\left( {y_j - y_m } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_m } & {y_j - y_m } \\<br /> {x_j - x_k } & {y_j - y_k } \\<br /> <br /> \end{array} } \right| \wedge \hfill \\<br /> \left( {y - y_k } \right)\left( {x_k - x_m } \right)\left| {\begin{array}{*{20}c}<br /> {x_k - x_m } & {y_k - y_m } \\<br /> {x_k - x_j } & {y_k - y_j } \\<br /> <br /> \end{array} } \right| \leqslant \left( {x - x_k } \right)\left( {y_k - y_m } \right)\left| {\begin{array}{*{20}c}<br /> {x_k - x_m } & {y_k - y_m } \\<br /> {x_k - x_j } & {y_k - y_j } \\<br /> <br /> \end{array} } \right| \wedge \hfill \\<br /> \left( {z - z_j } \right)\left( {x_j - x_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_k } & {z_j - z_k } \\<br /> {x_j - x_m } & {z_j - z_m } \\<br /> <br /> \end{array} } \right| \leqslant \left( {x - x_j } \right)\left( {z_j - z_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_k } & {z_j - z_k } \\<br /> {x_j - x_m } & {z_j - z_m } \\<br /> <br /> \end{array} } \right| \wedge \hfill \\<br /> \left( {z - z_j } \right)\left( {x_j - x_m } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_m } & {z_j - z_m } \\<br /> {x_j - x_k } & {z_j - z_k } \\<br /> <br /> \end{array} } \right| \leqslant \left( {x - x_j } \right)\left( {z_j - z_m } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_m } & {z_j - z_m } \\<br /> {x_j - x_k } & {z_j - z_k } \\<br /> <br /> \end{array} } \right| \wedge \hfill \\<br /> \left( {z - z_k } \right)\left( {x_k - x_m } \right)\left| {\begin{array}{*{20}c}<br /> {x_k - x_m } & {z_k - z_m } \\<br /> {x_k - x_j } & {z_k - z_j } \\<br /> <br /> \end{array} } \right| \leqslant \left( {x - x_k } \right)\left( {z_k - z_m } \right)\left| {\begin{array}{*{20}c}<br /> {x_k - x_m } & {z_k - z_m } \\<br /> {x_k - x_j } & {z_k - z_j } \\<br /> <br /> \end{array} } \right| \wedge \hfill \\<br /> \left( {z - z_j } \right)\left( {y_j - y_k } \right)\left| {\begin{array}{*{20}c}<br /> {y_j - y_k } & {z_j - z_k } \\<br /> {y_j - y_m } & {z_j - z_m } \\<br /> <br /> \end{array} } \right| \leqslant \left( {y - y_j } \right)\left( {z_j - z_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_k } & {z_j - z_k } \\<br /> {x_j - x_m } & {z_j - z_m } \\<br /> <br /> \end{array} } \right| \wedge \hfill \\<br /> \left( {z - z_j } \right)\left( {y_j - y_m } \right)\left| {\begin{array}{*{20}c}<br /> {y_j - y_m } & {z_j - z_m } \\<br /> {y_j - y_k } & {z_j - z_k } \\<br /> <br /> \end{array} } \right| \leqslant \left( {y - y_j } \right)\left( {z_j - z_m } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_m } & {z_j - z_m } \\<br /> {x_j - x_k } & {z_j - z_k } \\<br /> <br /> \end{array} } \right| \wedge \hfill \\<br /> \left( {z - z_k } \right)\left( {y_k - y_m } \right)\left| {\begin{array}{*{20}c}<br /> {y_k - y_m } & {z_k - z_m } \\<br /> {y_k - y_j } & {z_k - z_j } \\<br /> <br /> \end{array} } \right| \leqslant \left( {y - y_k } \right)\left( {z_k - z_m } \right)\left| {\begin{array}{*{20}c}<br /> {y_k - y_m } & {z_k - z_m } \\<br /> {y_k - y_j } & {z_k - z_j } \\<br /> <br /> \end{array} } \right| \hfill \\ <br /> \end{gathered} \right.} \right\}}
where \forall i > 0,\;\left( {x_i ,y_i ,z_i } \right) = f_i \left( t \right)
Find the net volume traversed by Rt from t=a to t=b if
\exists p,q \in \left( {a,b} \right):\left( {R_p - \partial R_p } \right) \cap \left( {R_q - \partial R_q } \right) \ne \emptyset \, \wedge \, p \ne q
--------------------------------------------------------------------------------------------------------
*Edit: it may be simpler to describe Rt in words: Rt is the "union of all closed triangular regions defined by vertices fj,fk,fm for all combinations of j,k,m at any t \in \left[ {a,b} \right]."

Anyhow,
Given continuous functions
\begin{gathered}<br /> f_1 :\left[ {a,b} \right] \to \mathbb{R}^3 \hfill \\<br /> \vdots \hfill \\<br /> f_n :\left[ {a,b} \right] \to \mathbb{R}^3 \hfill \\ <br /> \end{gathered}
for which
\exists g:\left[ {a,b} \right] \to \mathbb{R}^3 {\text{ such that }}f_1 \cdot g = \cdots = f_n \cdot g
define \forall t \in \left[ {a,b} \right]
R_t = \left\{ {\left( {x,y,z} \right)\left| {\left( {x,y,z} \right) \cdot g = f_1 \cdot g} \right.} \right\} \cap
\bigcup\limits_{\begin{subarray}{l} <br /> j < k < m \leqslant n, \\ <br /> \left( {j,k,m} \right) \in \mathbb{N}^3 <br /> \end{subarray}} {\left\{ {\left( {x,y,z} \right)\left| \begin{gathered}<br /> \left( {y - y_j } \right)\left( {x_j - x_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_k } & {y_j - y_k } \\<br /> {x_j - x_m } & {y_j - y_m } \\<br /> <br /> \end{array} } \right| \leqslant \left( {x - x_j } \right)\left( {y_j - y_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_k } & {y_j - y_k } \\<br /> {x_j - x_m } & {y_j - y_m } \\<br /> <br /> \end{array} } \right| \wedge \hfill \\<br /> \left( {y - y_j } \right)\left( {x_j - x_m } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_m } & {y_j - y_m } \\<br /> {x_j - x_k } & {y_j - y_k } \\<br /> <br /> \end{array} } \right| \leqslant \left( {x - x_j } \right)\left( {y_j - y_m } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_m } & {y_j - y_m } \\<br /> {x_j - x_k } & {y_j - y_k } \\<br /> <br /> \end{array} } \right| \wedge \hfill \\<br /> \left( {y - y_k } \right)\left( {x_k - x_m } \right)\left| {\begin{array}{*{20}c}<br /> {x_k - x_m } & {y_k - y_m } \\<br /> {x_k - x_j } & {y_k - y_j } \\<br /> <br /> \end{array} } \right| \leqslant \left( {x - x_k } \right)\left( {y_k - y_m } \right)\left| {\begin{array}{*{20}c}<br /> {x_k - x_m } & {y_k - y_m } \\<br /> {x_k - x_j } & {y_k - y_j } \\<br /> <br /> \end{array} } \right| \wedge \hfill \\<br /> \left( {z - z_j } \right)\left( {x_j - x_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_k } & {z_j - z_k } \\<br /> {x_j - x_m } & {z_j - z_m } \\<br /> <br /> \end{array} } \right| \leqslant \left( {x - x_j } \right)\left( {z_j - z_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_k } & {z_j - z_k } \\<br /> {x_j - x_m } & {z_j - z_m } \\<br /> <br /> \end{array} } \right| \wedge \hfill \\<br /> \left( {z - z_j } \right)\left( {x_j - x_m } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_m } & {z_j - z_m } \\<br /> {x_j - x_k } & {z_j - z_k } \\<br /> <br /> \end{array} } \right| \leqslant \left( {x - x_j } \right)\left( {z_j - z_m } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_m } & {z_j - z_m } \\<br /> {x_j - x_k } & {z_j - z_k } \\<br /> <br /> \end{array} } \right| \wedge \hfill \\<br /> \left( {z - z_k } \right)\left( {x_k - x_m } \right)\left| {\begin{array}{*{20}c}<br /> {x_k - x_m } & {z_k - z_m } \\<br /> {x_k - x_j } & {z_k - z_j } \\<br /> <br /> \end{array} } \right| \leqslant \left( {x - x_k } \right)\left( {z_k - z_m } \right)\left| {\begin{array}{*{20}c}<br /> {x_k - x_m } & {z_k - z_m } \\<br /> {x_k - x_j } & {z_k - z_j } \\<br /> <br /> \end{array} } \right| \wedge \hfill \\<br /> \left( {z - z_j } \right)\left( {y_j - y_k } \right)\left| {\begin{array}{*{20}c}<br /> {y_j - y_k } & {z_j - z_k } \\<br /> {y_j - y_m } & {z_j - z_m } \\<br /> <br /> \end{array} } \right| \leqslant \left( {y - y_j } \right)\left( {z_j - z_k } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_k } & {z_j - z_k } \\<br /> {x_j - x_m } & {z_j - z_m } \\<br /> <br /> \end{array} } \right| \wedge \hfill \\<br /> \left( {z - z_j } \right)\left( {y_j - y_m } \right)\left| {\begin{array}{*{20}c}<br /> {y_j - y_m } & {z_j - z_m } \\<br /> {y_j - y_k } & {z_j - z_k } \\<br /> <br /> \end{array} } \right| \leqslant \left( {y - y_j } \right)\left( {z_j - z_m } \right)\left| {\begin{array}{*{20}c}<br /> {x_j - x_m } & {z_j - z_m } \\<br /> {x_j - x_k } & {z_j - z_k } \\<br /> <br /> \end{array} } \right| \wedge \hfill \\<br /> \left( {z - z_k } \right)\left( {y_k - y_m } \right)\left| {\begin{array}{*{20}c}<br /> {y_k - y_m } & {z_k - z_m } \\<br /> {y_k - y_j } & {z_k - z_j } \\<br /> <br /> \end{array} } \right| \leqslant \left( {y - y_k } \right)\left( {z_k - z_m } \right)\left| {\begin{array}{*{20}c}<br /> {y_k - y_m } & {z_k - z_m } \\<br /> {y_k - y_j } & {z_k - z_j } \\<br /> <br /> \end{array} } \right| \hfill \\ <br /> \end{gathered} \right.} \right\}}
where \forall i > 0,\;\left( {x_i ,y_i ,z_i } \right) = f_i \left( t \right)
Find the net volume traversed by Rt from t=a to t=b if
\exists p,q \in \left( {a,b} \right):\left( {R_p - \partial R_p } \right) \cap \left( {R_q - \partial R_q } \right) \ne \emptyset \, \wedge \, p \ne q
--------------------------------------------------------------------------------------------------------
*Edit: it may be simpler to describe Rt in words: Rt is the "union of all closed triangular regions defined by vertices fj,fk,fm for all combinations of j,k,m at any t \in \left[ {a,b} \right]."
Last edited: