Finiteness of a converging random number series

Loren Booda
Messages
3,108
Reaction score
4
1. Imagine a positive point x not equal to zero.

2. Consider a randomly chosen point y with distance to zero less than x.

3. Let y=x. Repeat #2.

4. Is the sum of the y-values finite as y approaches zero?
 
Physics news on Phys.org
Loren Booda said:
1. Imagine a positive point x not equal to zero.

2. Consider a randomly chosen point y with distance to zero less than x.

3. Let y=x. Repeat #2.

4. Is the sum of the y-values finite as y approaches zero?

For step three, it's supposed to be the other way around, right? x is supposed to equal y? Otherwise there's no reason for y to approach zero (or any other number).

I don't know if it always converges, but on average it converges to x (by "average" I mean that for any given random y value, the average of all choices is x/2, so y, on average, equals x/2).
 
Hi, I understand this as follows: denote by ran(x) a random number between 0 and x. Let x1=ran(1), and let xi=ran(xi-1) for x>1.

Let S be the sum Ʃxi.

As noted above, the expected value of S is 1 (does require a very minor argument). The chance of the series not converging is 0. For example the chance of S>N must be less than 1/N, for the average sum to be 1, so the chance of divergence is less than 1/N for any positive N. (A small simulation shows that the chance of the sum exceeding 7 is about 1 in 10 million)
 
Last edited:
Thanks kindly both of you for your information, which I am attempting to cogitate.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top