First order differential equation

magnifik
Messages
350
Reaction score
0
find the solution for the following equation:

dy(t)/dt + 3y(t) = x(t-2), t > 0 and y(0) = 0

i did it by parameterization but am unsure if it is correct. i need help especially with the limits of integration.

y' + 3y = x(t-2)
yh' = -3yh
yh = Ce^-3t
y(t) = v(t)e^-3t
(ve^-3t)' = v'e^-3t - 3ve^-3t
-3ve^-3t + v'e^-3t = -3ve^-3t + x(t-2)
v' = e^3t * x(t-2)
v = int[e^3t * x(t-2) dt] // int means integral
y(t) = e^-3t * int[e^3T * x(T-2) dT] // T is tau
i'm not sure if that's correct. right now i have the limits of integration set to 0 to t

thanks in advance
 
Physics news on Phys.org
One way is to take Laplace transforms. I am assuming here that x(t) is a predefined function
 
we have not discussed Laplace transforms in class yet. x(t-2) stands alone. no further information is given.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top