First-Order Linear Differential Problem

Hiche
Messages
82
Reaction score
0

Homework Statement



Solve the following IVP:

X' = \begin{pmatrix}2 & -1\\3 & -2\end{pmatrix}X + \begin{pmatrix}0\\t\end{pmatrix} with X(0) = \begin{pmatrix}1\\0\end{pmatrix}

Homework Equations


The Attempt at a Solution



The eigenvalue corresponding to \begin{pmatrix}2 & -1\\3 & -2\end{pmatrix} is \lambda = 0. We find that X_c = c_1\begin{pmatrix}1\\2\end{pmatrix} e^{0t}. Now in order to find X_p, how exactly is the right way? I took X_p = \begin{pmatrix}a_1\\b_1\end{pmatrix}t and wanted to find a_1 and b_1. Right or wrong?
 
Physics news on Phys.org
Hi Hiche! :smile:
Hiche said:
The eigenvalue corresponding to \begin{pmatrix}2 & -1\\3 & -2\end{pmatrix} is \lambda = 0.

Nooo :redface:
 
oh, crap! Apparently, 3 * 1 = 4 -_-

So, again, the eigenvalues are \lambda_1 = -1 and \lambda_2 = 1. I hope this is correct. So the solution of X_c = c_1\begin{pmatrix}1\\1\end{pmatrix}e^t + c_2\begin{pmatrix}1\\3\end{pmatrix}e^{-t}.

Now about X_p. Is my method correct (first post)?
 
Hiche said:
Now in order to find X_p, how exactly is the right way? I took X_p = \begin{pmatrix}a_1\\b_1\end{pmatrix}t and wanted to find a_1 and b_1. Right or wrong?

(i'm not sure, but…) i'd be inclined to go for X_p = \begin{pmatrix}a_0\\b_0\end{pmatrix} + \begin{pmatrix}a_1\\b_1\end{pmatrix}t
 
Okay, so upon a little work, X_p = \begin{pmatrix}1\\2\end{pmatrix}t and the general solution is X = X_c + X_p

Thank you, tiny-tim.
 
But X_p = \begin{pmatrix}1\\2\end{pmatrix}t isn't a solution …

Xp' = (1,2), and Xp(0) = (0,0)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top