Flat Spacetime at Event Horizon of Black Hole?

btouellette
Messages
4
Reaction score
0
I've been working through Leonard Susskind's "The Theoretical Minimum" lecture series (which are a fantastic introduction to the topics covered by the way) and a couple of his comments confused me when he was covering the Kruskal-Szekeres metric/coordinates in General Relativity.

The end of the relevant section is at 28:48 here:

He uses the Schwarzschild metric (ignoring the scale factor of Rs)
d\tau^2 = (1-1/r) dt^2 - dr^2 / (1-1/r) - r^2 d\Omega^2
and redefines it in terms of the proper distance from the event horizon (ρ) and a new time coordinate (ω = t/2) to arrive at the metric
d\tau^2 = F(\rho) \rho^2 d\omega^2 - d\rho^2 - r(\rho)^2 d\Omega^2
and as we approach the event horizon where ρ→0 the metric approaches
d\tau^2 = \rho^2 d\omega^2 - d\rho^2 - (1+\rho^2/4)^2 d\Omega^2

It makes sense to me that as ρ→∞ the metric approximates the metric of flat space and I can see that at the event horizon the metric is basically the same as the flat space metric using hyperbolic polar coordinates but I'm not sure how to interpret that information and don't have any intuition. There are both tidal forces and curvature at the event horizon so the spacetime is not flat. Is this just related to the facts that hyperbolic polar coordinates can be used to define hyperbolas of constant r on a spacetime diagram which are equivalent to a constant relativistic acceleration and that an observer in a static position outside a black hole is undergoing a constant acceleration to cancel out the acceleration due to gravity?
 
Physics news on Phys.org
Spacetime is not flat at the event horizon. Near the event horizon, the metric may look similar to the flat-space metric, but given any point in any spacetime, we can *always* choose coordinates such that the metric has that form near that point. To determine whether spacetime is flat, you need to compute the curvature, which involves taking second derivatives of the metric.
 
Oh! That makes perfect sense and actually really helps me tie in the last few lectures with the first half of the series where he covers that topic explicitly. Thank you!
 
The space-time metric can be approximated by the Rindler metric near the horizon.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top