Calculating the Directional Derivative of T at (1,1,2)

twoflower
Messages
363
Reaction score
0
<br /> T(x,y,z) = x^2 - y^2 + z^2 + xz^2<br />

<br /> 3x^2 - y^2 - z = 0<br />

<br /> 2x^2 + 2y^2 - z^2 = 0<br />

<br /> \bigtriangledown T (x,y,z) = (2x + z^2, -2y, 2z(1+x))<br />
<br /> \bigtriangledown T (1,1,2) = 2(3, -1, 4)<br />
<br /> D_{\overrightarrow{v}}(1,1,2) = \bigtriangledown T(1,1,2).\overrightarrow{v} = 2(3v_1 - v_2 + 4v_3)<br />
<br /> T_1 = (6x, -2y, -1)<br />
<br /> T_2 = (4x, 4y, -2z)<br />
<br /> T_1 = (6, -2, -1)<br />
<br /> T_2 = (4, 4, -4)<br />
<br /> \overrightarrow{n} = T_1\ \mbox{x}\ T_2 = (12, 20, 32) = 4(3,5,8)<br />
<br /> ||\overrightarrow{n}|| = 4\sqrt{9 + 25 + 64} = 28\sqrt{2}<br />
<br /> \frac{2.7.4}{28\sqrt{2}} (3.3 - 5 + 4.8) = 33\sqrt{2} \frac{°C}{s}<br />
 
Last edited:
Physics news on Phys.org
I don't know how to delete my thread, I was preparing the TeX graphics and in the meanwhile I already found the solution...please could someone delete it?

Thank you and sorry.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top