I Follow-up on the Expanding Universe Insight article

cianfa72
Messages
2,805
Reaction score
296
TL;DR Summary
About the form of RW comoving observer worldline in local Minkowski frame at event p.
Hi, reading this Insight raised a doubt regarding the section "Comoving observers in a local Minkowski frame".

Robertson-Walker (RW) comoving observers have constant ##x## in comoving coordinates (to take it simple assume a 1+1 RW spacetime). From the following coordinate transformation into local Minkowski coordinates at event ##p##
$$\begin{align*}\tau &\simeq t + \frac{1}{2}H_0 a_0^2 x^2 = t + \frac{1}{2} a’^2_0 x^2, \\\xi &\simeq a_0 x (1 + H_0 t).\end{align*}$$
a comoving observer at proper distance ##d_0## from ##\xi = 0## at ##\tau=0## (i.e. on the spacelike hypersurface ##\tau=0##) has ##\xi = d_0## coordinate, hence ##x= d_0 / a_0##. Therefore such comoving observer's worldline in comoving coordinates is given by ##x= d_0 / a_0## constant and varying ##t##.

Substituting it into the transformation above yields in ##(\xi, \tau)## local Minkowski coordinates
$$\xi \simeq d_0 (1 + H_0 t)$$
However in the Insight it is given by
$$\xi \simeq d_0 (1 + H_0 \tau)$$
From where the above come from ? Thanks.
 
Last edited:
Physics news on Phys.org
They are the same to the ordered considered in the ##\simeq## relation.
 
Orodruin said:
They are the same to the ordered considered in the ##\simeq## relation.
Ah ok, basically for "small" ##x## the term involving ##x^2## in $$\tau \simeq t + \frac{1}{2}H_0 a_0^2 x^2 = t + \frac{1}{2} a’^2_0 x^2$$ can be neglected, hence ##\tau \simeq t##.

It makes sense to pick "small" values for ##x## since the derivation of the transformation from RW coordinates to local Minkowski coordinates at point/event ##p## employs the assumption ##x^{\alpha} = 0## at ##p##.
 
Last edited:
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
Back
Top