I Follow-up on the Expanding Universe Insight article

cianfa72
Messages
2,821
Reaction score
298
TL;DR Summary
About the form of RW comoving observer worldline in local Minkowski frame at event p.
Hi, reading this Insight raised a doubt regarding the section "Comoving observers in a local Minkowski frame".

Robertson-Walker (RW) comoving observers have constant ##x## in comoving coordinates (to take it simple assume a 1+1 RW spacetime). From the following coordinate transformation into local Minkowski coordinates at event ##p##
$$\begin{align*}\tau &\simeq t + \frac{1}{2}H_0 a_0^2 x^2 = t + \frac{1}{2} a’^2_0 x^2, \\\xi &\simeq a_0 x (1 + H_0 t).\end{align*}$$
a comoving observer at proper distance ##d_0## from ##\xi = 0## at ##\tau=0## (i.e. on the spacelike hypersurface ##\tau=0##) has ##\xi = d_0## coordinate, hence ##x= d_0 / a_0##. Therefore such comoving observer's worldline in comoving coordinates is given by ##x= d_0 / a_0## constant and varying ##t##.

Substituting it into the transformation above yields in ##(\xi, \tau)## local Minkowski coordinates
$$\xi \simeq d_0 (1 + H_0 t)$$
However in the Insight it is given by
$$\xi \simeq d_0 (1 + H_0 \tau)$$
From where the above come from ? Thanks.
 
Last edited:
Physics news on Phys.org
They are the same to the ordered considered in the ##\simeq## relation.
 
Orodruin said:
They are the same to the ordered considered in the ##\simeq## relation.
Ah ok, basically for "small" ##x## the term involving ##x^2## in $$\tau \simeq t + \frac{1}{2}H_0 a_0^2 x^2 = t + \frac{1}{2} a’^2_0 x^2$$ can be neglected, hence ##\tau \simeq t##.

It makes sense to pick "small" values for ##x## since the derivation of the transformation from RW coordinates to local Minkowski coordinates at point/event ##p## employs the assumption ##x^{\alpha} = 0## at ##p##.
 
Last edited:
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
Back
Top