Follow up to B=I-2A-A^2 where mu=1-2lambda+(lambda)^2

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
Dustinsfl
Messages
2,217
Reaction score
5
Show that if \lambda=1 is an eigenvalue of A, then the matrix B will be singular.

\mu(1)=1-2+1=0

B\mathbf{x}=0\mathbf{x}

or does this need to be done via determinant?

det(B-\mu I)=0 since \lambda=1, \mu=0.

det(B-0I)=det(B)=0 Hence B is singular.
 
Physics news on Phys.org
Dustinsfl said:
Show that if \lambda=1 is an eigenvalue of A, then the matrix B will be singular.

\mu(1)=1-2+1=0

B\mathbf{x}=0\mathbf{x}
This is true, but how did you arrive at it? Also, what's the significance of this equation in terms of what you're supposed to show?
Dustinsfl said:
or does this need to be done via determinant?

det(B-\mu I)=0 since \lambda=1, \mu=0.

det(B-0I)=det(B)=0 Hence B is singular.
This is another way to show it.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top