Dustinsfl
- 2,217
- 5
Show that if \lambda=1 is an eigenvalue of A, then the matrix B will be singular.
\mu(1)=1-2+1=0
B\mathbf{x}=0\mathbf{x}
or does this need to be done via determinant?
det(B-\mu I)=0 since \lambda=1, \mu=0.
det(B-0I)=det(B)=0 Hence B is singular.
\mu(1)=1-2+1=0
B\mathbf{x}=0\mathbf{x}
or does this need to be done via determinant?
det(B-\mu I)=0 since \lambda=1, \mu=0.
det(B-0I)=det(B)=0 Hence B is singular.