Foorier series from haar function

  • Thread starter Thread starter nhrock3
  • Start date Start date
  • Tags Tags
    Function Series
nhrock3
Messages
403
Reaction score
0
http://mathworld.wolfram.com/HaarFunction.html
f(x)= {1, 0<=x<3/4}
f(x)= {-1, 3/4<=x<=1}
calculate the foorier function with haar group
here is the solution:
L_0=\phi_{0,-1}(x)=1\\
L_1=\phi_{0,0}(x)=\begin{Bmatrix}1,0\leq x\leq 0.5<br /> \\ <br /> -1,-0.5\leq x\leq 1<br /> end{Bmatrix}\\
i don't know why i have latex error here the code is
L_1=\phi_{0,0}(x)=\begin{Bmatrix}1,0\leq x\leq 0.5
\\
-1,-0.5\leq x\leq 1
end{Bmatrix}\\
aL_0+bL_1\\
L_2=\phi{0,1}(x)\\
L_3=\phi{1,1}(x)\\
f=0.75\phi_{0,-1}(x)+1/4\phi_{0,0}(x)+1/2sqrtof2\phi_{1,1}(x)\\
&lt;f,e_0&gt;=\int_{0}^{1}fe_0dx
 
Last edited:
Physics news on Phys.org
That's Fourier...
nhrock3 said:
http://mathworld.wolfram.com/HaarFunction.html
f(x)= {1, 0&lt;=x&lt;3/4}
f(x)= {1, 3/4&lt;=x&lt;=1}
Is there a typo above? Otherwise, why not say that f(x) = 1, 0 <= x <= 1?

Also, I fixed your LaTeX below.
nhrock3 said:
calculate the foorier function with haar group
here is the solution:
L_0=\phi_{0,-1}(x)=1\\
L_1=\phi_{0,0}(x)=\begin{Bmatrix}1,0\leq x\leq 0.5<br /> \\ <br /> -1,-0.5\leq x\leq 1<br /> \end{Bmatrix}\\
i don't know why i have latex error here the code is
L_1=\phi_{0,0}(x)=\begin{Bmatrix}1,0\leq x\leq 0.5
\\
-1,-0.5\leq x\leq 1
\end{Bmatrix}\\
aL_0+bL_1\\
What is the above supposed to be?
nhrock3 said:
L_2=\phi{0,1}(x)\\
L_3=\phi{1,1}(x)\\
f=0.75\phi_{0,-1}(x)+1/4\phi_{0,0}(x)+1/2\sqrt{2\phi_{1,1}(x)}\\
&lt;f,e_0&gt;=\int_{0}^{1}fe_0dx
 
i have changed the function
there was a mistake
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top