MHB For which c is there 1/0 solution?

  • Thread starter Thread starter mathmari
  • Start date Start date
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! 😊

I am looking the following:

Solve for a fix number $c\in \mathbb{R}$ the following linear system of equations: $$\begin{cases}x_1-cx_2+(2c-1)x_3=-(c+1) \\ 3x_2+(5c+8)x_3=-(c-2)\end{cases}$$
For which values of $c$ is there one solution and for which values are there no solution? I have done the following:

First we write this in matrix form:
\begin{equation*}\begin{pmatrix}\left.\begin{matrix}1 & -c & 2c-1 \\ 0 & 3 & 5c+8 \end{matrix}\right|\begin{matrix}-(c+1) \\ -(c-2)\end{matrix}\end{pmatrix}\end{equation*}
It is already in echelon form.

This at the second line we have "$3$" which doesn't depend on $c$, then the case "No solution"doesn't occur, right?

Since the second line cannotbe a multiple of the first one,we conclude that we always have One solution.

Is that correct?

:unsure:
 
Physics news on Phys.org
Hey mathmari!

From the second equation, we can write $x_2$ as a function of $x_3$, which will indeed have at least 1 solution due to the non-zero coefficient $3$.
After that we can always find $x_1$ from the first equation as a function of $x_2$ and $x_3$.
So we will always have infinitely many solutions, won't we? 🤔

Looking at it geometrically, we have the intersection of 2 planes.
Those are actual planes since the coefficients of each cannot all be zero, regardless of the value of $c$.
They can either coincide, or be parallel (no solutions), or intersect in a line.
Since the coefficients in the second line cannot be a multiple of the coefficients in the first line, we can conclude that those planes do not coincide, and they are not parallel either.
That leaves that the solution must be a line, which means we have infinitely many solutions. 🤔
 
Last edited:
Klaas van Aarsen said:
From the second equation, we can write $x_2$ as a function of $x_3$, which will indeed have at least 1 solution due to the non-zero coefficient $3$.
After that we can always find $x_1$ from the first equation as a function of $x_2$ and $x_3$.
So we will always have infinitely many solutions, won't we? 🤔

Looking at it geometrically, we have the intersection of 2 planes.
Those are actual planes since the coefficients of each cannot all be zero, regardless of the value of $c$.
They can either coincide, or be parallel (no solutions), or intersect in a line.
Since the coefficients in the second line cannot be a multiple of the coefficients in the first line, we can conclude that those planes do not coincide, and they are not parallel either.
That leaves that the solution must be a line, which means we have infinitely many solutions. 🤔

I see! Thank you! (Handshake)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
2K