MHB For which c is there 1/0 solution?

  • Thread starter Thread starter mathmari
  • Start date Start date
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! 😊

I am looking the following:

Solve for a fix number $c\in \mathbb{R}$ the following linear system of equations: $$\begin{cases}x_1-cx_2+(2c-1)x_3=-(c+1) \\ 3x_2+(5c+8)x_3=-(c-2)\end{cases}$$
For which values of $c$ is there one solution and for which values are there no solution? I have done the following:

First we write this in matrix form:
\begin{equation*}\begin{pmatrix}\left.\begin{matrix}1 & -c & 2c-1 \\ 0 & 3 & 5c+8 \end{matrix}\right|\begin{matrix}-(c+1) \\ -(c-2)\end{matrix}\end{pmatrix}\end{equation*}
It is already in echelon form.

This at the second line we have "$3$" which doesn't depend on $c$, then the case "No solution"doesn't occur, right?

Since the second line cannotbe a multiple of the first one,we conclude that we always have One solution.

Is that correct?

:unsure:
 
Physics news on Phys.org
Hey mathmari!

From the second equation, we can write $x_2$ as a function of $x_3$, which will indeed have at least 1 solution due to the non-zero coefficient $3$.
After that we can always find $x_1$ from the first equation as a function of $x_2$ and $x_3$.
So we will always have infinitely many solutions, won't we? 🤔

Looking at it geometrically, we have the intersection of 2 planes.
Those are actual planes since the coefficients of each cannot all be zero, regardless of the value of $c$.
They can either coincide, or be parallel (no solutions), or intersect in a line.
Since the coefficients in the second line cannot be a multiple of the coefficients in the first line, we can conclude that those planes do not coincide, and they are not parallel either.
That leaves that the solution must be a line, which means we have infinitely many solutions. 🤔
 
Last edited:
Klaas van Aarsen said:
From the second equation, we can write $x_2$ as a function of $x_3$, which will indeed have at least 1 solution due to the non-zero coefficient $3$.
After that we can always find $x_1$ from the first equation as a function of $x_2$ and $x_3$.
So we will always have infinitely many solutions, won't we? 🤔

Looking at it geometrically, we have the intersection of 2 planes.
Those are actual planes since the coefficients of each cannot all be zero, regardless of the value of $c$.
They can either coincide, or be parallel (no solutions), or intersect in a line.
Since the coefficients in the second line cannot be a multiple of the coefficients in the first line, we can conclude that those planes do not coincide, and they are not parallel either.
That leaves that the solution must be a line, which means we have infinitely many solutions. 🤔

I see! Thank you! (Handshake)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...

Similar threads

Replies
3
Views
1K
Replies
15
Views
2K
Replies
8
Views
2K
Replies
2
Views
3K
Replies
34
Views
2K
Back
Top