MHB For which integers x,y is (4-6*sqrt(2))^2 = x+y*sqrt(2)?

  • Thread starter Thread starter danielw
  • Start date Start date
  • Tags Tags
    Integers
Click For Summary
The equation (4-6*sqrt(2))^2 can be expressed in the form x + y*sqrt(2) by expanding it correctly. The first method attempted led to incorrect values, but the correct expansion yields 88 - 48*sqrt(2). Thus, the integers x and y are 88 and -48, respectively. This demonstrates the importance of accurately expanding and simplifying expressions involving square roots. The solution highlights the necessity of careful algebraic manipulation in such problems.
danielw
Messages
5
Reaction score
0
Hi All

I have the following question.View attachment 5866

I have reviewed my notes but have not been able to crack this.

I tried two different ways, both wrong.

First:

$$
(4-6*\sqrt2)^2=$$

$$16-24*\sqrt2-24*\sqrt2+(36*2)

= 88-218*\sqrt2$$

so, $x=88$ and

$y=218$My second method was

$$(4-6*\sqrt2)^2= 4^2-(6*2)=28$$

but this is not in the form they want.

I'd really appreciate some advice on how to go about solving this kind of problem.

Thanks!

Daniel
 

Attachments

  • intergers.PNG
    intergers.PNG
    2.3 KB · Views: 102
Last edited by a moderator:
Mathematics news on Phys.org
I think your first method is the way I would use, so that the LHS of the equation is in the form $a+b\sqrt{2}$:

$$(4-6\sqrt{2})^2=x+y\sqrt{2}$$

$$16-48\sqrt{2}+72=x+y\sqrt{2}$$

$$88-48\sqrt{2}=x+y\sqrt{2}$$

And so we see that:

$$(x,y)=(88,-48)$$
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
992
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K