B Force between 2 Point Charges Across Frames

silverrahul
Messages
27
Reaction score
2
TL;DR Summary
The force between 2 moving point charges in the lab frame should be 1/ϒ times the force in their rest frame. But my calculations are showing 1/ϒ^2 times the force in rest frame. Where am i going wrong ?
So, i was trying to calculate, the net force between 2 point charges in their rest frame, and in a frame where they are moving.

So, assume, there are 2 point charges each of charge +q.
They are r distance apart from each other and moving parallel to each other with a speed v relative to a lab observer.So , in the unprimed frame, i.e. the rest frame of the point charges.
Net force of repulsion between them F = q2/4πε0r2Whereas in the primed frame , i.e the lab frame,
Net force ( including the magnetic force ) = F' = q2/4πε0r2 - μ0q2 v2/4πr2

Upon rearranging the terms of F', it results in F' = F / ϒ2

But, it was my understanding that F' should be equal to F / ϒ
Can someone please point out where i am going wrong ?
 
Physics news on Phys.org
What kind of electric field is measured when charge q flies past a measuring device at speed v?

The maximum value is: ##E=\gamma(v)*q/4πε_0r##
 
silverrahul said:
No , i think it should be E=q/4πε0r2
That's for the rest frame of the charge. If you transform the E field into frame where the charge moves, it gets length contracted, and thus stronger perpendicular to the motion, but weaker in line with the motion.

Electric-Field-of-a-Charged-Particle.png

From: https://www.researchgate.net/figure/Electric-Field-of-a-Charged-Particle_fig2_2177605
 
  • Like
Likes silverrahul
A.T. said:
That's for the rest frame of the charge. If you transform the E field into frame where the charge moves, it gets length contracted, and thus stronger perpendicular to the motion, but weaker in line with the motion.From: https://www.researchgate.net/figure/Electric-Field-of-a-Charged-Particle_fig2_2177605
Thanks a lot for this . I had no idea about this, i will look it up to see if it helps
 
silverrahul said:
Summary:: The force between 2 moving point charges in the lab frame should be 1/ϒ times the force in their rest frame. But my calculations are showing 1/ϒ^2 times the force in rest frame. Where am i going wrong ?

Whereas in the primed frame , i.e the lab frame,
Net force ( including the magnetic force ) = F' = q2/4πε0r2 - μ0q2 v2/4πr2
Your transformations for the E field are incorrect. See here for details: https://en.wikipedia.org/wiki/Classical_electromagnetism_and_special_relativity#The_E_and_B_fields

In this case since in the rest frame ##\vec B=0## and since ##r## is perpendicular to ##v## (meaning also that ##\vec E## is perpendicular to ##v##) we have: $$\vec E'=\gamma(\vec E + \vec v \times \vec B)-(\gamma - 1)(\vec E \cdot \hat v) \hat v= \gamma \vec E$$ $$ \vec B' = \gamma \left(\vec B - \frac{\vec v \times \vec E}{c^2} \right) - (\gamma - 1) (\vec B \cdot \hat v)\hat v = - \frac{\gamma}{c^2} \vec v \times \vec E$$ so then ##\vec F' = q \vec E' + q \vec v \times \vec B'## which gives $$F'= q \gamma \vec E + q \vec v \times (-\frac{\gamma}{c^2} \vec v \times \vec E) = q \gamma \vec E - q \gamma \frac{ v^2}{c^2} \vec E = \frac{q}{\gamma}\vec E$$
 
Last edited:
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Back
Top