Force of the average car crash

AI Thread Summary
Research on the force generated during car crashes indicates that significant forces are involved, with estimates around 500,000 Newtons for a typical impact. The kinetic energy of a car, such as a 1200 kg vehicle traveling at 30 m/s, can be calculated to be approximately 540,000 Joules, leading to an average force of about 270,000 Newtons required to stop it. The discussion highlights the importance of understanding impulse, where the change in momentum is calculated using the car's mass and speed. To determine average and peak forces during a crash, one must consider the duration of the impact and the force-time curve. Overall, the magnitude of forces in car crashes is substantial and warrants further investigation.
Da Apprentice
Messages
57
Reaction score
0
I was wondering is there any research that has been done into the typical amount of force generated duing a car crash. Eg, when the car hits a wall for example does anyone know the average force needed to stop it? thoght it'd be interesting to know since I'm doing similar research on this topic in Physics at the moment.

Thanks,
 
Physics news on Phys.org
Da Apprentice said:
I was wondering is there any research that has been done into the typical amount of force generated duing a car crash. Eg, when the car hits a wall for example does anyone know the average force needed to stop it? thoght it'd be interesting to know since I'm doing similar research on this topic in Physics at the moment.

Thanks,
The http://hypertextbook.com/facts/index-topics.shtml" is a good site for such things. The information is usually well referenced. A quick search, though, does not show data on forces in car crashes. A more thorough search might.

I think the Myth Busters did something on this. Not the level of rigo you probably want, but it might provide a lead...
 
Last edited by a moderator:
Yeah searched all through there... got nothing... can someone please tell me how much 500,000N is equivalent to... Is this a large Force?
 
Yes, that's a fairly large amount of force (a bit over a hundred thousand pounds). If all you're looking for is the average force, simply look at how far the car's center of mass traveled after impact. From that, you can determine acceleration, and thus determine force.
 
For a 4 m long car of mass 1200 kg moving at 30 m/s, the kinetic energy is
.5mv2 = 540000 Joules

If we use cjl's approximation and take the center of mass at the center of the car, the work needed to stop the car is
FD = F(2m) = 540000 Joules
F = 270000 Newtons

I suspect the center of mass is farther forward (given the mass of the engine block) so the 500000N figure looks realistic.

I am surprised by that magnitude.
 
I like to look at this in terms of impulse, i.e., change in momentum.

If you know the mass (m) and the speed (v) of the car initially, and we assume that the car comes to a stop after the crash, the total impulse delivered to the car is m*v.

If you want to know the average force applied to the car during the crash, divide the impulse by the duration of the crash.

To find the peak force, you will need to have a curve for the relative change of the force over time during the crash. If you scale this curve so that its integral is the impulse then the peak of the curve is the peak force.

Cheers,
Chris
 
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top