Force on Stopper in UCM & Hanging Washer Relationship

AI Thread Summary
The relationship between the weight of hanging washers and the force on the stopper is defined by the tension in the string, which provides the necessary centripetal force for the stopper's circular motion. The washers are in equilibrium, with the tension in the string balancing their weight, resulting in no net force acting on them. Although the system is not in equilibrium in terms of the stopper's motion, the forces on the washers sum to zero, indicating they are stationary. The tension in the string, which is influenced by the gravitational force acting on the washers, is crucial for maintaining the stopper's rotation. Understanding these dynamics is essential for solving the problem effectively.
Klymene15
Messages
10
Reaction score
0

Homework Statement



What is the relationship between the weight of the hanging washers and the force acting on the stopper by the string?

Here is the diagram provided by the book: http://www.goodreads.com/photo/user/5034346-kylaia-formerly-known-as-klymene?photo=454140

It also says to simply assume L=R

Homework Equations



ƩF=ma, where the sum of the forces equals mass times acceleration.

ƩF=(mv2)/r, where the sum of the forces on an object in rotation equals mass times velocity squared, all divided by the radius

W=mg, where the force of the weight equals mass times the acceleration due to gravity (9.8)

The Attempt at a Solution



The only force acting on the stopper, since it is in rotation, is the tension of the string.
ƩFstopper=(mstoppervstopper)/r

There is tension and weight acting on the washers.
ƩFwashers=Twashers-Wwashers=0

Therefore, Twashers=Wwashers=mwashers*9.8

I'm guessing that somehow, the system has to be in equilibrium, because that's the only way anything could be put in a relationship. But I don't see how it could possibly be in equilibrium. And I don't understand how to relate the forces on the washers to the force acting on the stopper.

It's all purely theoretical, so there are no given numbers.
 
Physics news on Phys.org


Klymene15 said:

Homework Statement



What is the relationship between the weight of the hanging washers and the force acting on the stopper by the string?

Here is the diagram provided by the book: http://www.goodreads.com/photo/user/5034346-kylaia-formerly-known-as-klymene?photo=454140

It also says to simply assume L=R

Homework Equations



ƩF=ma, where the sum of the forces equals mass times acceleration.

ƩF=(mv2)/r, where the sum of the forces on an object in rotation equals mass times velocity squared, all divided by the radius

W=mg, where the force of the weight equals mass times the acceleration due to gravity (9.8)

The Attempt at a Solution



The only force acting on the stopper, since it is in rotation, is the tension of the string.
ƩFstopper=(mstoppervstopper)/r

There is tension and weight acting on the washers.
ƩFwashers=Twashers-Wwashers=0

Therefore, Twashers=Wwashers=mwashers*9.8

I'm guessing that somehow, the system has to be in equilibrium, because that's the only way anything could be put in a relationship. But I don't see how it could possibly be in equilibrium. And I don't understand how to relate the forces on the washers to the force acting on the stopper.

It's all purely theoretical, so there are no given numbers.

It is far from theoretical! I can't see the picture you ahve attached but this reads like a standard PSSC [Physical Science Study Committee] Practical exercise.
PSSC was a Senior High Text and Prac manual developed/written in the 1960s and used in schools for many years from then.
 


Well, the system is not in equilibrium in the sense that there needs to be a net centripetal force acting on the rotating object in order to enable circular motion.
However, the sum of the forces on the washers will be zero. The tension in the string and the gravitational force acting on the washers means that the washers are in equilibrium - which makes sense since they aren't accelerating.
What provides the centripetal force on the rotating stopper?
The tension in the string.
What provides the tension in string?
The force of gravity acting on the washers.

cheers
 


The Anonymous said:
Well, the system is not in equilibrium in the sense that there needs to be a net centripetal force acting on the rotating object in order to enable circular motion.
However, the sum of the forces on the washers will be zero. The tension in the string and the gravitational force acting on the washers means that the washers are in equilibrium - which makes sense since they aren't accelerating.
What provides the centripetal force on the rotating stopper?
The tension in the string.
What provides the tension in string?
The force of gravity acting on the washers.

cheers

All good.

ANd the reference to "let L = R" is allowing for the fact that the string from tube [I assume the string goes through a tube - still have not seen the picture] to the stopper is not exactly horizontal.
The tension must be providing an upward component to balance the (small) weight of the stopper.
Geometry of the situation will show that the actual radius of the circular motion is L.cosθ, but then the actual horizontal component of the tension is T.cosθ so the "droop factor" is rendered irrelevant. [θ was the angle below the horizontal that the string is angled down due to the weight of the stopper]
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top