MHB Forces of 8N: Find Angle & Mass of Particle

AI Thread Summary
The discussion addresses the calculation of the angle between two forces of 8N that result in a 13N resultant. The angle is determined using the formula θ = π - arccos((2 * 8² - 13²) / (2 * 8²)), or alternatively θ = 2arccos(6.5 / 8). Additionally, it is established that the mass of the particle is 2kg, derived from the equation 7N = mg - 13N, leading to mg = 20N with g set at 10 m/s². The acute angle that one of the 8N forces makes with the surface is given by φ = (π - θ) / 2. The calculations and methodology are confirmed as correct.
Shah 72
MHB
Messages
274
Reaction score
0
Two forces each of size 8N, have a resultant of 13N.

a) Find the angle between the forces

b) The two given forces of magnitude 8N act on a particle of mass m kg, which remains at rest on a horizontal surface with no friction. The normal contact force between the surface and the particle has magnitude 7N. Find m and the acute angle that one of the 8N forces makes with the surface.
 
Mathematics news on Phys.org
What have you done on this and where do you have a problem? Have you drawn the "force parallelogram" showing the addition of the forces?
 
Country Boy said:
What have you done on this and where do you have a problem? Have you drawn the "force parallelogram" showing the addition of the forces?
Hi , thanks I got the answer.
 
(a) angle between the two 8N forces is

$\theta = \pi - \arccos\left(\dfrac{2 \cdot 8^2 - 13^2}{2\cdot 8^2}\right)$, or $\theta = 2\arccos\left(\dfrac{6.5}{8}\right)$

(b) $7\,N = mg - 13\,N \implies mg = 20\,N \implies m = 2kg$ (using $g = 10 \, m/s^2$)

$\phi = \dfrac{\pi - \theta}{2}$
 
skeeter said:
(a) angle between the two 8N forces is

$\theta = \pi - \arccos\left(\dfrac{2 \cdot 8^2 - 13^2}{2\cdot 8^2}\right)$, or $\theta = 2\arccos\left(\dfrac{6.5}{8}\right)$

(b) $7\,N = mg - 13\,N \implies mg = 20\,N \implies m = 2kg$ (using $g = 10 \, m/s^2$)

$\phi = \dfrac{\pi - \theta}{2}$
Thank you so much!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top