Form of Kruskal-Szekeres Completion

  • Thread starter Thread starter Airsteve0
  • Start date Start date
  • Tags Tags
    Form
Airsteve0
Messages
80
Reaction score
0
In my general relativity class my professor derived the form of the Kruskal-Szekeres form of the Schwarzschild metric using several formulas without actually going through the algebra. I am trying to prove the answer using these formulas but I am having some trouble, especially using the Lambert W. function. In the file I have attached, you can see that equation (9) is the final result from the changes made in the previous equations. In my attempt I tried taking the derivative of the equation for 'r' and arrived at what I have shown below. However, when subbing this in and working with this I don't feel I am making progress. Any assistance is greatly appreciated, thanks.

dr=2m\frac{dL}{dz}dz

where z=\frac{-uv}{e}

The link for my professor's paper is at this link, http://arxiv.org/pdf/1202.0860v2.pdf , but I will also include the .pdf
 

Attachments

Physics news on Phys.org
That seems like a proper mess :)

But basically what you have is
r = 2m(\mathcal{L}(1+\Psi(u,v)))
so
dr = \frac{\partial r}{\partial u} du + \frac{\partial r}{\partial v} dv = ... = \frac{2m \mathcal{L}}{1 + \mathcal{L}} (du/u + dv/v)
or something like that; I'm too lazy to do the work :) Then repeat for dt. Then you just plug them into the metric and pray everything works out.
 
got it, thanks!
 
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top