alejandrito29
- 148
- 0
i am read a paper of name: "formalism for an extended object"(in spanish)..
a sub manifold of coordinates y^i i=0...p embebed in a manifold with coordinates x^u u=0...D with metric g_{uv}
the induced metric is:
h_{ij}=d_ix^ud_jx^vg_{uv}
The paper says that the energy momentum tensor is:
T^{uv}(Z^a)= \int\! dy^{p+1} \, \frac{\sqrt{h}}{\sqrt{g}}h^{ij}d_ix^ud_jx^v \delta (x^a-Z^a)
but the paper does not say : ¿what is Z^a and x^a?
a sub manifold of coordinates y^i i=0...p embebed in a manifold with coordinates x^u u=0...D with metric g_{uv}
the induced metric is:
h_{ij}=d_ix^ud_jx^vg_{uv}
The paper says that the energy momentum tensor is:
T^{uv}(Z^a)= \int\! dy^{p+1} \, \frac{\sqrt{h}}{\sqrt{g}}h^{ij}d_ix^ud_jx^v \delta (x^a-Z^a)
but the paper does not say : ¿what is Z^a and x^a?