Formulate a second-order ODE as a first-order system.

  • Thread starter Thread starter MaxManus
  • Start date Start date
  • Tags Tags
    Ode System
MaxManus
Messages
268
Reaction score
1

Homework Statement



Write (11.55) as a system of two first-order differential equations. Also set
up the initial condition for this system


Homework Equations



mu'' + f(u' ) + s(u) = F(t), t > 0, u(0) = U0, u˙ (0) = V0 .



The Attempt at a Solution



Hey, I don't know how write a system of two first-order differential equations.
I got the equation in an introduction programming class. Can someone please help me
 
Physics news on Phys.org
let v=u'
mu'' + f(u' ) + s(u) = F(t), t > 0, u(0) = U0, u˙ (0) = V0
->
v=u',mv' + f(v ) + s(u) = F(t), t > 0, u(0) = U0, v (0) = V0
 
Thank you.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top