Formulation of a linear programming model

-A-
Messages
5
Reaction score
0
Ok, so the title didn't allow me to be too descriptive. Basically, I'm trying to formulate a variant of the time constrained traveling salesman problem. I read a paper "An Exact Algorithm for the Time-Constrained Traveling Salesman Problem" by Edward Baker which formulated this problem of a traveling salesman, who has to visit every given city or node in the graph, with the constraint of each node having an entry and exit time, between which the visit must take place. The objective function minimized the total distance.

My question was what if I had a number of salesmen and I wanted them to visit the cities, each of which have some time constraints. I want to find out how many salesmen I will need for a given graph.

I understand this can be seen as a variant of the vehicle routing problem, My problem is, is it possible to frame this as a linear programming problem with an objective function and constraints?

Thanks.
 
Physics news on Phys.org
I don't think there's a generic way to map the discrete distance function for your problem into a, not only continuous, but linear function over parameters.

As you're trying a discrete to continuous I don't think there is a "natural" way to do this.

Given what I recall about the computational complexity of the traveling salesman problem and the simplicity of linear programming solutions,
I'm going to guess that the short answer to your question is an unqualified NO!.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top