Four momentum of fused particles

LASmith
Messages
21
Reaction score
0

Homework Statement



two particles of masses m1 and m2 move at speeds u1, u2 respectively collide and fuse. If α is the angle between the two directions of motion before the collision, find an expression for the new mass m, in terms of m1 m2 u1 u2 and α


Homework Equations



Etot2 = p2c2+m2c4


The Attempt at a Solution



(m12 u12 c2 + m1 2 c4)1/2 + (m22 u22 c2 + m22 c4)1/2 = mc2

However this does not take into consideration the angle α, so I am unsure as to where this comes in.
 
Physics news on Phys.org
u_1,u_2 are speeds in the laboratory frame and, since there is an angle between the initial particles, there is net momentum of the system. So the final state particle cannot be at rest in the laboratory frame. You must also consider momentum conservation to solve the problem.
 
fzero said:
u_1,u_2 are speeds in the laboratory frame and, since there is an angle between the initial particles, there is net momentum of the system.

From this can I re-write the RHS of the equation to be = (m2u32c2 + m2c4)1/2

Squaring both sides I obtain

m12(u12+c2) + m22(u22+c2) + 2(m12m22(u12u22+u12c2+u22c2+c4))1/2 = m2(u32+c2)

Is this correct?

fzero said:
You must also consider momentum conservation to solve the problem.

So does momentum hold the same in special relativity as it does in general mechanics?
Therefore I would obtain

m1u1sin(α/2) - m2u2sin(α/2) = mu3sinβ

&

m1u1cos(α/2) + m2u2cos(α/2) = mu3cosβ

However this gives too many unknowns, I have attempted to find either u3 or β in terms of u1, u2 or α but have failed to find a connection, as the mass m is not just simply m1 + m2

Any helps would be much appreciated.
 
LASmith said:
From this can I re-write the RHS of the equation to be = (m2u32c2 + m2c4)1/2

Squaring both sides I obtain

m12(u12+c2) + m22(u22+c2) + 2(m12m22(u12u22+u12c2+u22c2+c4))1/2 = m2(u32+c2)

Is this correct?

You're missing Lorentz factors:

\vec{p} = \gamma m \vec{u}, ~~~\gamma= \frac{1}{\sqrt{1-(u/c)^2}}.

Also we know that E=\gamma mc^2, so we can simplify much of this.


So does momentum hold the same in special relativity as it does in general mechanics?
Therefore I would obtain

m1u1sin(α/2) - m2u2sin(α/2) = mu3sinβ

&

m1u1cos(α/2) + m2u2cos(α/2) = mu3cosβ

However this gives too many unknowns, I have attempted to find either u3 or β in terms of u1, u2 or α but have failed to find a connection, as the mass m is not just simply m1 + m2

Any helps would be much appreciated.

Having \alpha/2 in the formulas looks wrong. You can set the path of one of the incoming particles to be the x-axis, then the angle only appears in the momentum of the other two particles.

You have 3 unknowns (m,u_3,\beta) and 3 equations (E,p_x,p_y), so the unknowns are determined. Just double check the definitions of everything before plugging into formulas, since you do have a lot of mistakes.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?

Similar threads

Back
Top