MHB Four Non-Linear Simultaneous Equations

AI Thread Summary
The discussion revolves around solving four non-linear simultaneous equations involving the variables u, v, w, and r. Sudharaka provides approximate solutions for these variables, indicating that u is approximately -166.26 or 260, v is -110.82 or 104, r is -29.67 or 520, and w is -81.99 or 65. Another participant expresses interest in finding a manual method to solve these equations rather than relying on brute force. They analyze the function related to the first equation, concluding that for real solutions, r must be at least 520, which aligns with Sudharaka's findings. The discussion highlights the complexity of the equations and the challenge of deriving solutions by hand.
Wilmer
Messages
303
Reaction score
0
4 equations, 4 unknowns:

\[\frac{u(r^2 - u^2)}{r^2 + u^2}=156~~~~~~~~~~(1)\]
\[\frac{v(r^2 - v^2)}{r^2 + v^2} = 96~~~~~~~~~(2)\]
\[\frac{w(r^2 - w^2)}{r^2 + w^2} = 63~~~~~~~~~~(3)\]
\[\frac{315uvw + 24336vw + 9216uw + 3969uv}{2r} = 943488~~~~~~~~~(4)\]

Who can solve that mess?
 
Last edited by a moderator:
Mathematics news on Phys.org
Wilmer said:
4 equations, 4 unknowns:

u(r^2 - u^2) / (r^2 + u^2) = 156 [1]
v(r^2 - v^2) / (r^2 + v^2) = 96 [2]
w(r^2 - w^2) / (r^2 + w^2) = 63 [3]
(315uvw + 24336vw + 9216uw + 3969uv) / (2r) = 943488 [4]

Who can solve that mess?

Hi Wilmer, :)

If you are only concerned about real roots these are the solutions Maxima gives. Note that the first one is only an approximate.\[u=-166.2623906705539,v=-110.8238636363636,r=-29.66972878390201,w=-81.98732171156894\]

\[u=260,v=104,r=520,w=65\]

Kind Regards,
Sudharaka.
 
Sudharaka said:
\[u=260,v=104,r=520,w=65\]
Hi Suds!
Yes, that's correct: I had this one solved,
but by brute force.

All I'm trying to do is find a way to solve
this "by hand".
 
Wilmer said:
Hi Suds!
Yes, that's correct: I had this one solved,
but by brute force.

All I'm trying to do is find a way to solve
this "by hand".
I think that I may have been part way towards finding Sudharaka's solution "by hand". I was looking at the function $f(x) = \dfrac{x(1-x^2)}{1+x^2}.$ For positive values of $x$, this has a maximum value of 3/10, which occurs when $x=1/2.$

Your equation (1) says that $f(u/r) = 156/r.$ This tells you that $156/r\leqslant 3/10$, or $r\geqslant 520.$ Also, the value $r=520$ can only occur if $u=520/2=260$. I was going to explore this further, to see if there were values of $v$ and $w$ compatible with those values of $r$ and $u$, but Sudharaka got there first.
 
Background info, in case useful:
Code:
              C
 
 
        D                     E
              U          V                    
                   M
                   
                   W
                   
B                  F                        A
Acute triangle ABC: M is circumcenter.
U, V and W are the incenters of triangles BCM, ACM and ABM respectively:
and DM, EM and FM are the perpendicular heights.

NOT GIVENS: a = BC = 624, b = AC = 960, c = AB = 1008, r = 520 = AM=BM=CM.
NOT GIVENS: u = UM = 260, v = VM = 104, w = WM = 65.
GIVENS: d = DU = 156, e = EV = 96, f = FW = 63.

Work to set up the 4 equations:
a = 2dr / u , b = 2er / b , c = 2fr / w

from triangleBCM: u(r^2 - u^2) / (r^2 + u^2) = d [1]
from triangleACM: v(r^2 - v^2) / (r^2 + v^2) = e [2]
from triangleABM: w(r^2 - w^2) / (r^2 + w^2) = f [3]

area(BCM + ACM + ABM) = areaABC; leads to :
[uvw(d + e + f) + vwd^2 + uwe^2 + uvf^2] / (2r) = def [4]

Inserting the givens gives us:
u(r^2 - u^2) / (r^2 + u^2) = 156 [1]
v(r^2 - v^2) / (r^2 + v^2) = 96 [2]
w(r^2 - w^2) / (r^2 + w^2) = 63 [3]
(315uvw + 24336vw + 9216uw + 3969uv) / (2r) = 943488 [4]

I'm simply curious as to the possibility of solving these 4 simultaneous equations.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top