We have(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\epsilon(i f, r) = \epsilon_2(i f)[/tex] when [tex]H + h_2(x) \leq z < + \infty[/tex]

[tex]\epsilon(i f, r) = 0[/tex] when [tex]h_1(x) < z < H + h_2(x)[/tex]

[tex]\epsilon(i f, r) = \epsilon_1(i f)[/tex] when [tex]- \infty < z \leq h_1(x)[/tex]

show the corresponding Fourier transform is

[tex]\frac{i}{q_z} \int d^2x e^{iq_\bot \cdot x}[\epsilon_2 e^{iq_z[H+h_2(x)]} - \epsilon_1 e^{iq_z h_1(x)}][/tex]

I've looked in a few books but tbh I have no real idea how to show this...

Any help/suggestions/tips would be much appreciated. Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Fourier representation of aperiodic irregular function

**Physics Forums | Science Articles, Homework Help, Discussion**