Fourier representation of aperiodic irregular function (1 Viewer)

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

We have

[tex]\epsilon(i f, r) = \epsilon_2(i f)[/tex] when [tex]H + h_2(x) \leq z < + \infty[/tex]
[tex]\epsilon(i f, r) = 0[/tex] when [tex]h_1(x) < z < H + h_2(x)[/tex]
[tex]\epsilon(i f, r) = \epsilon_1(i f)[/tex] when [tex]- \infty < z \leq h_1(x)[/tex]

show the corresponding Fourier transform is

[tex]\frac{i}{q_z} \int d^2x e^{iq_\bot \cdot x}[\epsilon_2 e^{iq_z[H+h_2(x)]} - \epsilon_1 e^{iq_z h_1(x)}][/tex]

I've looked in a few books but tbh I have no real idea how to show this...

Any help/suggestions/tips would be much appreciated. Thanks.
Last edited:
a small hint please?

The Physics Forums Way

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving