Fourier Series Problem - Representing an Even Function

maple
Messages
9
Reaction score
0
In quantum mechanics, a free particle in an infinite potential well has the wave function (ie. overlap <x/phi>). Its eigenfunctions take the form:

(2/a)^1/2 * sin(n*pi*x/a), n is ofcourse an integer.

My question is that do all eigenfunctions form a basis? And if so how can you represent an even function with eigenfunctions which are clearly odd- my understanding of the Fourier Series is that its equals a function by representing it as an infinite sum of both sin and cos terms, and if the function is even, the coefficients of the sin terms are zero.

Eg. why can I represent:

cos (pi*x/a) = Infinite Sum (A(subscript)n * sin(n*pi*x/a)).

Any assistance would be much appreciated.
 
Mathematics news on Phys.org
You cannot represent any function with sines in the manner you hypothesize. I would guess the answer is that the Eigenfunctions form a basis of the space of the set of solutions of the wave equation. Not all functions are solutions.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top