##\varphi(p)=\frac{1}{\sqrt{2\pi\hbar}}\int^{\infty}_{-\infty}dx\psi(x)e^{-\frac{ipx}{\hbar}}##. This ##\hbar## looks strange here for me. Does it holds identity(adsbygoogle = window.adsbygoogle || []).push({});

##\int^{\infty}_{-\infty}|\varphi(p)|^2dp=\int^{\infty}_{-\infty}|\psi(x)|^2dx=1##???

I'm don't think so because this ##\hbar##. So state in impulse space is not normalized.

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Fourier transform. Impulse representation.

**Physics Forums | Science Articles, Homework Help, Discussion**