- #1
LagrangeEuler
- 717
- 20
##\varphi(p)=\frac{1}{\sqrt{2\pi\hbar}}\int^{\infty}_{-\infty}dx\psi(x)e^{-\frac{ipx}{\hbar}}##. This ##\hbar## looks strange here for me. Does it holds identity
##\int^{\infty}_{-\infty}|\varphi(p)|^2dp=\int^{\infty}_{-\infty}|\psi(x)|^2dx=1##?
I'm don't think so because this ##\hbar##. So state in impulse space is not normalized.
##\int^{\infty}_{-\infty}|\varphi(p)|^2dp=\int^{\infty}_{-\infty}|\psi(x)|^2dx=1##?
I'm don't think so because this ##\hbar##. So state in impulse space is not normalized.