Fourier transform of t-V model for t=0 case

Click For Summary
SUMMARY

The discussion focuses on computing the Fourier transform of the t-V model specifically for the case where t=0. The Hamiltonian is expressed in momentum space, highlighting the potential term V and the electron annihilation operator's Fourier transform. The resulting Hamiltonian in momentum space is given by the equation involving the electron number operator and the creation and annihilation operators. The participants also explore the possibility of simplifying the expression further and computing energy eigenvalues analogous to the V=0 case.

PREREQUISITES
  • Understanding of quantum mechanics and Hamiltonians
  • Familiarity with Fourier transforms in quantum systems
  • Knowledge of creation and annihilation operators
  • Basic concepts of the t-V model in condensed matter physics
NEXT STEPS
  • Study the implications of the t-V model with non-zero t values
  • Learn about energy eigenvalue calculations in quantum systems
  • Research the role of momentum space in quantum mechanics
  • Explore simplifications of Hamiltonians in many-body physics
USEFUL FOR

Physicists, particularly those specializing in condensed matter physics, quantum mechanics students, and researchers interested in many-body systems and the t-V model.

randomquestion
Messages
6
Reaction score
2
Homework Statement
I am trying to compute the Fourier transform of the 2D ##t-V## model for the case ##t=0##.
Relevant Equations
$$\hat H = -t \displaystyle \sum_{\langle i,j\rangle} ( \hat c_i^{\dagger} \hat c_j + \hat c_j^{\dagger} \hat c_i) + V \sum_{\langle i, j \rangle} \hat n_i \hat n_j$$
To compute the Fourier transform of the ##t-V## model for the case where ##t = 0##, we start by expressing the Hamiltonian in momentum space. Given that the hopping term ##t## vanishes, we only need to consider the potential term:

$$\hat{H} = V \sum_{\langle i, j \rangle} \hat{n}_i \hat{n}_j$$

Let's express this in terms of creation and annihilation operators in momentum space. The Fourier transform of the electron annihilation operator ##\hat{c}_i## is given by:

$$\hat{c}_i = \frac{1}{\sqrt{N}} \sum_k e^{-ikr_i} \hat{c}_k$$

where ##N## is the total number of lattice sites, ##k## is the wavevector, and ##r_i## is the position of lattice site ##i##.

Therefore, the electron number operator ##\hat{n}_i## can be expressed as:

$$\hat{n}_i = \hat{c}_i^\dagger \hat{c}_i = \frac{1}{N} \sum_{k,k'} e^{i(k'-k)r_i} \hat{c}_{k'}^\dagger \hat{c}_k$$

Hence, the Hamiltonian in momentum space becomes:

$$\hat{H} = \frac{V}{N^2} \sum_{\langle i, j \rangle} \sum_{k,k'} e^{i(k'-k)(r_j-r_i)} \hat{c}_{k'}^\dagger \hat{c}_k \hat{c}_{k}^\dagger \hat{c}_{k'}$$


I wonder if we can further simplify, is my attempt correct? Is it possible to compute the energy eigenvalues like in the case of ##V=0## where the solution corresponds ##e_k = -2t(cos(kx)+cos(ky))##.
 
Last edited:
  • Like
Likes   Reactions: berkeman

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K