Fourier transform of t-V model for t=0 case

randomquestion
Messages
6
Reaction score
2
Homework Statement
I am trying to compute the Fourier transform of the 2D ##t-V## model for the case ##t=0##.
Relevant Equations
$$\hat H = -t \displaystyle \sum_{\langle i,j\rangle} ( \hat c_i^{\dagger} \hat c_j + \hat c_j^{\dagger} \hat c_i) + V \sum_{\langle i, j \rangle} \hat n_i \hat n_j$$
To compute the Fourier transform of the ##t-V## model for the case where ##t = 0##, we start by expressing the Hamiltonian in momentum space. Given that the hopping term ##t## vanishes, we only need to consider the potential term:

$$\hat{H} = V \sum_{\langle i, j \rangle} \hat{n}_i \hat{n}_j$$

Let's express this in terms of creation and annihilation operators in momentum space. The Fourier transform of the electron annihilation operator ##\hat{c}_i## is given by:

$$\hat{c}_i = \frac{1}{\sqrt{N}} \sum_k e^{-ikr_i} \hat{c}_k$$

where ##N## is the total number of lattice sites, ##k## is the wavevector, and ##r_i## is the position of lattice site ##i##.

Therefore, the electron number operator ##\hat{n}_i## can be expressed as:

$$\hat{n}_i = \hat{c}_i^\dagger \hat{c}_i = \frac{1}{N} \sum_{k,k'} e^{i(k'-k)r_i} \hat{c}_{k'}^\dagger \hat{c}_k$$

Hence, the Hamiltonian in momentum space becomes:

$$\hat{H} = \frac{V}{N^2} \sum_{\langle i, j \rangle} \sum_{k,k'} e^{i(k'-k)(r_j-r_i)} \hat{c}_{k'}^\dagger \hat{c}_k \hat{c}_{k}^\dagger \hat{c}_{k'}$$


I wonder if we can further simplify, is my attempt correct? Is it possible to compute the energy eigenvalues like in the case of ##V=0## where the solution corresponds ##e_k = -2t(cos(kx)+cos(ky))##.
 
Last edited:
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top