dch1runs
- 10
- 0
1. A frictionless surface is inclined at an angle of 34.4° to the horizontal. A 270-g block on the ramp is attached to a 75.0-g block using a pulley, as shown in the figure below.
(a) Draw two free-body diagrams, one for the 270-g block and the other for the 75.0-g block. (b) Find the tension in the string and the magnitude of the acceleration of the 270-g block. (c) The 270-g block is released from rest. How long does it take for it to slide a distance of 0.90 m along the surface? (d) Will it slide up the incline, or down the incline?
F=m/a
Ok, so I'm having a lot of problem finding part (a). I'm pretty sure once I do, that b-d won't be very difficult at all. I rewrote the F=ma equation for both objects based on my free body diagrams. For the 75g object I had: a=g-T/m or a=9.81 m/(s*s) - T/.075g. For the 270g object i found that a=T/m-g*cos34.4. However when I try to solve as a system of equations my answers continue to be incorrect. Maybe the accelerations for the two objects are different? If so, then I have no idea where to go from there.
(a) Draw two free-body diagrams, one for the 270-g block and the other for the 75.0-g block. (b) Find the tension in the string and the magnitude of the acceleration of the 270-g block. (c) The 270-g block is released from rest. How long does it take for it to slide a distance of 0.90 m along the surface? (d) Will it slide up the incline, or down the incline?
F=m/a
Ok, so I'm having a lot of problem finding part (a). I'm pretty sure once I do, that b-d won't be very difficult at all. I rewrote the F=ma equation for both objects based on my free body diagrams. For the 75g object I had: a=g-T/m or a=9.81 m/(s*s) - T/.075g. For the 270g object i found that a=T/m-g*cos34.4. However when I try to solve as a system of equations my answers continue to be incorrect. Maybe the accelerations for the two objects are different? If so, then I have no idea where to go from there.