Friction in rolling without slipping

Click For Summary

Discussion Overview

The discussion centers on the concept of rolling without slipping, particularly examining the role of friction in this phenomenon. Participants explore the implications of friction on the motion of a rolling object, such as a ball, and the apparent contradictions that arise when considering constant speed and the forces involved. The scope includes theoretical considerations and conceptual clarifications.

Discussion Character

  • Debate/contested
  • Conceptual clarification

Main Points Raised

  • Some participants assert that for rolling without slipping to occur, static friction is necessary, as the point of contact with the surface is instantaneously at rest.
  • Others argue that the assumption of friction being required for rolling without slipping is incorrect, suggesting that rolling can occur even on a frictionless surface.
  • One participant highlights that a net horizontal force (friction) would change the speed of the center of mass, yet friction does no work, leading to contradictions in the assumption of constant speed.
  • Another participant emphasizes that just because a situation is not understood does not mean it is contradictory, suggesting that the understanding of "apparent contradiction" is subjective.
  • There is a discussion about the conditions under which rolling with slipping can occur, indicating that friction can exist without affecting the rolling motion under certain circumstances.

Areas of Agreement / Disagreement

Participants express multiple competing views regarding the necessity of friction for rolling without slipping. The discussion remains unresolved, with differing interpretations of the role of friction and the nature of apparent contradictions.

Contextual Notes

Participants reference specific conditions under which rolling without slipping can occur, including scenarios with varying friction levels, but do not reach a consensus on the necessity of friction in all cases.

pixel
Messages
545
Reaction score
147
Consider an object, say a ball, rolling at a constant speed without slipping to the right on a horizontal surface. Let's consider the ideal case, so no deformation of ball or surface. For rolling without slipping to occur, there has to be friction (static friction as the point on the ball that is in contact with the surface is instantaneously at rest). But that leads to some apparent contradictions.

First, a net horizontal force (friction) on the ball would cause the speed of its c.m. to change, but the friction force does no work so it couldn't change the speed. Second, there is a net torque about the c.m. of the ball which would cause the rotational speed to change. Both contradict the assumption of rolling without slipping at a constant speed. How to resolve?
 
Physics news on Phys.org
pixel said:
Consider an object, say a ball, rolling at a constant speed without slipping to the right on a horizontal surface. Let's consider the ideal case, so no deformation of ball or surface. For rolling without slipping to occur, there has to be friction (static friction as the point on the ball that is in contact with the surface is instantaneously at rest). But that leads to some apparent contradictions.

First, a net horizontal force (friction) on the ball would cause the speed of its c.m. to change, but the friction force does no work so it couldn't change the speed. Second, there is a net torque about the c.m. of the ball which would cause the rotational speed to change. Both contradict the assumption of rolling without slipping at a constant speed. How to resolve?
The net force acting on a wheel moving at constant velocity is zero. The magnitude of the static friction force is a reaction to the acceleration of the wheel. If the wheel it is not accelerating, the magnitude of the static friction force is zero.
 
  • Like
Likes   Reactions: malawi_glenn, hutchphd and Lnewqban
pixel said:
For rolling without slipping to occur, there has to be friction
No there doesn't.
pixel said:
How to resolve?
Your assumption that there is a frictional force is incorrect.
 
  • Like
Likes   Reactions: malawi_glenn
pixel said:
But that leads to some apparent contradictions.
Just because you don't understand something does not mean it is a contradiction.

Rolling without slippling means that the point that has contact with the surface has instantaneous velocity = 0.

If a ball is rolling on a surface where there is friction, the point of contact will not slide against the surface and there will be no external torque from the force of friction.

Place an already spinning ball or cylinder on a surface where there is some friction. What would you observe regarding the angular velocity and the linear velocity of that object?
 
malawi_glenn said:
Just because you don't understand something does not mean it is a contradiction.
I believe @Orodruin made this point to me in the not too distant past. I believe you and @kuruman were participating in that thread, as well. Speaking from experience, I know the feeling of encountering a knowledge gap...regularly!
 
malawi_glenn said:
Just because you don't understand something does not mean it is a contradiction.

Rolling without slippling means that the point that has contact with the surface has instantaneous velocity = 0.

If a ball is rolling on a surface where there is friction, the point of contact will not slide against the surface and there will be no external torque from the force of friction.

Place an already spinning ball or cylinder on a surface where there is some friction. What would you observe regarding the angular velocity and the linear velocity of that object?
You maybe don't understand what an "apparent contradiction" is.

I said in my post that the contact point was at rest.

There can be rolling with slipping on a surface with friction, given the right conditions.
 
pixel said:
You maybe don't understand what an "apparent contradiction" is.
An "apparent contradiction" is based upon your understanding of the situation.
pixel said:
For rolling without slipping to occur, there has to be friction (static friction as the point on the ball that is in contact with the surface is instantaneously at rest).
This is simply false. Do you understand this?
 
  • Like
Likes   Reactions: malawi_glenn
hutchphd said:
This is simply false.
One can demonstrate this as follows.
Consider the following setup:
1659930175836.png

black: asphalt (friction high enough to allow rolling without slipping at all points), grey: ice (no friction)
Release the ball, it will roll without slipping on the asphalt. On the ice, the point of contact will still be instantenously at rest, and the relation between v and ω will be v = ωR, just as before.
So clearly, the ball can roll without slipping even on a frictionless surface.
 
Last edited:
  • Like
Likes   Reactions: erobz, hutchphd and Lnewqban

Similar threads

  • · Replies 59 ·
2
Replies
59
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
7K