We thus see that the freshman physics construction of adding together Huygens wavelets is really a Fourier transform, which is exactly what Marcella has introduced by chopping his wave function at the edge of the slits. Although he is going from position to momentum space, by writing the result Eq. (6) in terms of θ, we have the same position-space result just obtained.
In sum, Marcella does make the valid point that quantum interference should be treated as a quantum phenomenon and quantum texts ought not immediately redirect the discussion to classical wave optics. But a more reasonable way to do this would be to simply show that the Schrodinger equation reduces to the Helmholtz equation, thus reducing the problem to one of classical scalar scattering with its concomitant approximations. This would also provide the opportunity of discussing relevant boundary conditions and to point out the difficulty of specifying them precisely in both the quantum and electromagnetic cases. As it stands, while Marcella’s procedure is useful in giving students practice with the Dirac formalism, it has introduced no quantum physics into the problem other than setting p = k, and has implicitly made all the assumptions that show this is indeed a problem of classical optics. That his result is the same as the one obtained by the simplest Huygens construction is merely a reflection of the fact that he has implicitly made the lowest-order approximations, where all methods converge to the same result.