Function Composition Homework: Derivatives of z w.r.t x, y

Ikastun
Messages
10
Reaction score
0

Homework Statement



Be z=F(u,v,w), u=f(x,y), v=e-αx, w=ln y, get the expression \partialz/\partialx, \partialz/\partialy.

Homework Equations



Chain rule.

The Attempt at a Solution



\partialz/\partialx=\partialz/\partialv*dv/dx=-α e-αx

\partialz/\partialy=\partialz/\partialw*dw/dy=1/y
 
Physics news on Phys.org
When calculating \frac{\partial z}{\partial x},you should consider all variables that depend on x not only v!
 
Thank you. What about the following expression: ∂z/∂x=∂z/∂u*∂u/∂x+∂z/∂v*dv/dx?. Same to ∂z/∂y with w.
 
Ikastun said:
Thank you. What about the following expression: ∂z/∂x=∂z/∂u*∂u/∂x+∂z/∂v*dv/dx?.
Looks good. You even picked up on the fact that dv/dx is a regular (not partial) derivative.
Ikastun said:
Same to ∂z/∂y with w.
What did you get?
 
∂z/∂y=∂z/∂u*∂u/∂y+∂z/∂w*dw/dy.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top