Functions, Mappings and Intervals.

AI Thread Summary
The discussion focuses on proving that a continuous function f maps the interval [a, b] onto itself, given that the derivative df/dx is less than 1 and the boundary conditions f(a) ≥ a and f(b) ≤ b. The user has successfully shown that f(b) - f(a) ≤ b - a but is struggling to demonstrate that f(a) ≤ f(x) ≤ f(b) for all x in [a, b]. There is a suggestion to utilize the Mean Value Theorem, but the user is uncertain about its application. Clarifications are made regarding the assumptions, particularly that f is continuous and the conditions on its endpoints. The user seeks guidance on how to complete the proof that no point in [a, b] maps outside this interval.
qspeechc
Messages
839
Reaction score
15

Homework Statement


This is a problem I am just trying to do myself to work out some other problem.

I am trying to prove: f:[a, b] → [a, b]
Given: f is continuous on [a, b], for all x in [a, b] then df/dx < 1 , f(a) ≥ a , f(b) ≤ b.

2. The attempt at a solution

First I proved that f(b) - f(a) ≤ b - a. It is simple, but I can give the proof if you wish.
Now I need to prove that for all x in [a, b] , f(a) ≤ f(x) ≤ f(b), but I have no clue how to do this. I thought of using the Mean Value Theorem somehow, but I don't quite know how. I also thought of showing that f(x) ≤ f(x + dx) for x in [a, b], but I don't know how to do that either. Any help ?
 
Physics news on Phys.org
f(a)\ge a and f(b)\le b are easy. You are told that f(a) and f(b) are in [a, b]!

Are you assuming that f is onto [a, b]? Otherwise, neither f(a)\le f(x)\le f(b) not df/dx< 1 is true for all x in [a, b]. Take, for example, a= -1, b= 1, f(x)=x. f(a)= f(b)= 1, but f(x) is less than 1 for all other x. Also df/dx> 1 for x> 1/2.
 
HallsofIvy said:
f(a)\ge a and f(b)\le b are easy. You are told that f(a) and f(b) are in [a, b]!

I do not need to prove that, that is one of the assumptions.

I want to prove that f maps from the interval [a,b] onto [a,b].

The assumptions are:
1) f is continuous on [a, b]
2) for all x in [a, b] then df/dx < 1 ,
3) f(a) ≥ a , f(b) ≤ b.


What I have shown:
f(b) - f(a) ≤ b - a

Now to prove that f maps from [a,b] to [a,b], then I also need to show that for all x in [a,b] it is true that f(a) ≤ f(x) ≤ f(b), that is, no point in the interval [a,b] can be mapped to a point outside the interval [a,b]. How do I do this?
 
Anyone :(
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Since ##px^9+q## is the factor, then ##x^9=\frac{-q}{p}## will be one of the roots. Let ##f(x)=27x^{18}+bx^9+70##, then: $$27\left(\frac{-q}{p}\right)^2+b\left(\frac{-q}{p}\right)+70=0$$ $$b=27 \frac{q}{p}+70 \frac{p}{q}$$ $$b=\frac{27q^2+70p^2}{pq}$$ From this expression, it looks like there is no greatest value of ##b## because increasing the value of ##p## and ##q## will also increase the value of ##b##. How to find the greatest value of ##b##? Thanks
Back
Top