"Don't panic!"
- 600
- 8
I understand that the fundamental theorem of calculus is essentially the statement that the derivative of the anti-derivative F evaluated at x\in (a,b) is equal to the value of the primitive function (integrand) f evaluated at x\in (a,b), i.e. F'(x)=f(x). However, can one imply directly from this that F'=f\;\;\forall x\in (a,b), such that F(b)-F(a)=\int_{a}^{b}F'(x)dx\;\;?
Also, I have attempted to prove the FTC and am interested to know whether my attempt is valid?!
Let f be a continuous function on [a,b] and let F: \mathbb{R}\rightarrow\mathbb{R} be a function that is continuous on [a,b] and differentiable on (a,b), defined such that F(x)=\int_{a}^{x}f(t)dt where x\in (a,b).
As f is continuous on [a,b] we therefore know that for any \varepsilon >0\;\;\exists\delta >0 such that 0<\vert t-x\vert <\delta\;\;\Rightarrow\;\;\big\vert f(t)-f(x)\big\vert <\varepsilon\quad\forall x \in [a,b]
Hence, consider the interval (x,x+h)\subseteq (a,b) and let 0<h<\delta. Now clearly x<t<x+h\;\;\Rightarrow\;\;0<t-x<h<\delta and so \big\vert f(t)-f(x)\big\vert <\varepsilon\quad\forall t \in (x,x+h) which implies that in this interval f(x)-\varepsilon<f(t)<f(x)+\varepsilon Using that f(x)\leq g(x)\;\;\Rightarrow\;\;\int_{a}^{b}f(x)dx\leq \int_{a}^{b}g(x)dx it follows that \int_{x}^{x+h}\left[f(x)-\varepsilon\right]dt<\int_{x}^{x+h}f(t)dt<\int_{x}^{x+h}\left[f(x)+\varepsilon\right]dt \\ \Rightarrow \left[f(x)-\varepsilon\right]h<\int_{x}^{x+h}f(t)dt<\left[f(x)+\varepsilon\right]h \\ \Rightarrow f(x)-\varepsilon<\frac{1}{h}\int_{x}^{x+h}f(t)dt<f(x)+\varepsilon \\ \Rightarrow\Bigg\vert \frac{1}{h}\int_{x}^{x+h}f(t)dt - f(x)\Bigg\vert <\varepsilon and as such the limit \lim_{h\rightarrow 0^{+}}\frac{1}{h}\int_{x}^{x+h}f(t)dt=f(x) exists.
Next we consider the interval (x-h,x)\subseteq (a,b) and again let 0<h<\delta. We see that x-h<t<x\;\;\Rightarrow\;\;-h<t-x<0\;\;\Rightarrow\;\;0<-(t-x)<h and so, following the same procedure as before \big\vert f(t)-f(x)\big\vert <\varepsilon\quad\forall t \in (x-h,x) \\ \Rightarrow\int_{x-h}^{x}\left[f(x)-\varepsilon\right]dt<\int_{x-h}^{x}f(t)dt<\int_{x-h}^{x}\left[f(x)+\varepsilon\right]dt \\ \Rightarrow \left[f(x)-\varepsilon\right]h<\int_{x-h}^{x}f(t)dt<\left[f(x)+\varepsilon\right]h\\ \Rightarrow f(x)-\varepsilon<\frac{1}{h}\int_{x-h}^{x}f(t)dt<f(x)+\varepsilon \\ \Rightarrow\Bigg\vert \frac{1}{h}\int_{x-h}^{x}f(t)dt - f(x)\Bigg\vert <\varepsilon and as such the limit \lim_{h\rightarrow 0^{-}}\frac{1}{h}\int_{x-h}^{x}f(t)dt=f(x) exists.
Therefore, as the right-handed and left-handed limits exist and are equal, we have that for any \varepsilon >0\;\;\exists\delta >0 such that \left(0<\vert t-x\vert <h<\delta\;\;\Rightarrow\;\; 0<h<\delta\right)\;\;\Rightarrow\;\;\bigg\vert \frac{1}{h}\int_{x}^{x+h}f(t)dt -f(x)\bigg\vert <\varepsilon i.e. the limit \lim_{h\rightarrow 0}\frac{1}{h}\int_{x}^{x+h}f(t)dt=f(x) exists. As \frac{1}{h}\int_{x}^{x+h}f(t)dt= F(x+h)-F(x) this implies that \lim_{h\rightarrow 0}\frac{F(x+h)-F(x)}{h}=F'(x)=f(x)
Also, I have attempted to prove the FTC and am interested to know whether my attempt is valid?!
Let f be a continuous function on [a,b] and let F: \mathbb{R}\rightarrow\mathbb{R} be a function that is continuous on [a,b] and differentiable on (a,b), defined such that F(x)=\int_{a}^{x}f(t)dt where x\in (a,b).
As f is continuous on [a,b] we therefore know that for any \varepsilon >0\;\;\exists\delta >0 such that 0<\vert t-x\vert <\delta\;\;\Rightarrow\;\;\big\vert f(t)-f(x)\big\vert <\varepsilon\quad\forall x \in [a,b]
Hence, consider the interval (x,x+h)\subseteq (a,b) and let 0<h<\delta. Now clearly x<t<x+h\;\;\Rightarrow\;\;0<t-x<h<\delta and so \big\vert f(t)-f(x)\big\vert <\varepsilon\quad\forall t \in (x,x+h) which implies that in this interval f(x)-\varepsilon<f(t)<f(x)+\varepsilon Using that f(x)\leq g(x)\;\;\Rightarrow\;\;\int_{a}^{b}f(x)dx\leq \int_{a}^{b}g(x)dx it follows that \int_{x}^{x+h}\left[f(x)-\varepsilon\right]dt<\int_{x}^{x+h}f(t)dt<\int_{x}^{x+h}\left[f(x)+\varepsilon\right]dt \\ \Rightarrow \left[f(x)-\varepsilon\right]h<\int_{x}^{x+h}f(t)dt<\left[f(x)+\varepsilon\right]h \\ \Rightarrow f(x)-\varepsilon<\frac{1}{h}\int_{x}^{x+h}f(t)dt<f(x)+\varepsilon \\ \Rightarrow\Bigg\vert \frac{1}{h}\int_{x}^{x+h}f(t)dt - f(x)\Bigg\vert <\varepsilon and as such the limit \lim_{h\rightarrow 0^{+}}\frac{1}{h}\int_{x}^{x+h}f(t)dt=f(x) exists.
Next we consider the interval (x-h,x)\subseteq (a,b) and again let 0<h<\delta. We see that x-h<t<x\;\;\Rightarrow\;\;-h<t-x<0\;\;\Rightarrow\;\;0<-(t-x)<h and so, following the same procedure as before \big\vert f(t)-f(x)\big\vert <\varepsilon\quad\forall t \in (x-h,x) \\ \Rightarrow\int_{x-h}^{x}\left[f(x)-\varepsilon\right]dt<\int_{x-h}^{x}f(t)dt<\int_{x-h}^{x}\left[f(x)+\varepsilon\right]dt \\ \Rightarrow \left[f(x)-\varepsilon\right]h<\int_{x-h}^{x}f(t)dt<\left[f(x)+\varepsilon\right]h\\ \Rightarrow f(x)-\varepsilon<\frac{1}{h}\int_{x-h}^{x}f(t)dt<f(x)+\varepsilon \\ \Rightarrow\Bigg\vert \frac{1}{h}\int_{x-h}^{x}f(t)dt - f(x)\Bigg\vert <\varepsilon and as such the limit \lim_{h\rightarrow 0^{-}}\frac{1}{h}\int_{x-h}^{x}f(t)dt=f(x) exists.
Therefore, as the right-handed and left-handed limits exist and are equal, we have that for any \varepsilon >0\;\;\exists\delta >0 such that \left(0<\vert t-x\vert <h<\delta\;\;\Rightarrow\;\; 0<h<\delta\right)\;\;\Rightarrow\;\;\bigg\vert \frac{1}{h}\int_{x}^{x+h}f(t)dt -f(x)\bigg\vert <\varepsilon i.e. the limit \lim_{h\rightarrow 0}\frac{1}{h}\int_{x}^{x+h}f(t)dt=f(x) exists. As \frac{1}{h}\int_{x}^{x+h}f(t)dt= F(x+h)-F(x) this implies that \lim_{h\rightarrow 0}\frac{F(x+h)-F(x)}{h}=F'(x)=f(x)
Last edited: