Fundamental Theorem of Calculus

tdwp
Messages
4
Reaction score
0
http://img527.imageshack.us/img527/8089/fr2rl4.gif

I know part a is the fundamental theorem of calculus, but I am not quite sure how to manipulate the integral to find part i or part ii.
Part b is again the fundamental theorem of calculus, but I am having a hard time solving for the antiderivative.
 
Last edited by a moderator:
Physics news on Phys.org
What is the statement of the fundamental theorem?
 
Fundamental Theorem of Calculus:

Let f be a function that is continuous on [a,b].
Part 1: Let F be an indefinite integral or antiderivative of f. Then
e1.gif

Part 2:
e2.gif
is an indefinite integral or antiderivative of f or A'(x) = f(x)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top