matineesuxxx
- 77
- 6
funky limit solutions??
hey guys, this is my first post, and absolutely love this site! Anyways, I've been studying some calculus to get ahead of the game before university and I came across a few limit questions that I solved, but I don't really know HOW I solved them and by that, I mean, with some of the substitutions, I got some limits that seem intuitive to me, but I don't really know why they are that way.. Forgive my latex if it doesn't end up lookin all pretty, I am pretty new to it. So I was hoping anybody could take a look at these 3 questions and let me know whatsup?
1) \begin{equation*}
\lim_{x\rightarrow \infty}x\,{\sin{\frac{1}{x}}}\quad \text{let}\,a=\frac{1}{x}\\\\\quad\therefore \lim_{x\rightarrow\infty}a= \lim_{a \rightarrow 0}a=0\\\\\qquad \therefore \lim_{x\rightarrow\infty}x\sin\frac{1}{x}=\lim_{a \rightarrow 0}\frac{\sin(a)}{a}=1\\\\\quad\therefore\lim_{x \rightarrow \infty}x\sin{\frac{1}{x}}=1
\end{equation*}
2) \begin{equation*}
\lim_{x\rightarrow 1}\frac{\sin(x-1)}{x^2+x-2}\\\\=\lim_{x\rightarrow1}\frac{\sin(x-1)}{(x+2)(x-1)}\\\\\text{let}\,a=x-1\qquad \therefore\,a+3=x+2\\\\ *\lim_{x\rightarrow 1}(x-1)=0\Rightarrow \lim_{a\rightarrow0}a=0\\\\ \therefore \lim_{x\rightarrow}\frac{\sin(x-1)}{(x+2)(x-1)}=\lim_{a\rightarrow0}\frac{\sin(a)}{a(a+3)}\\\\=(\lim_{a\rightarrow 0}\frac{1}{a+3}) (\lim_{a\rightarrow 0}\frac{\sin(a)}{a})\\\\=\frac{1}{3}
\end{equation*}
\begin{equation*}
\lim_{\theta \rightarrow 0}\frac{\sin\theta}{\theta+\tan \theta}\\\\\\=\lim_{\theta \rightarrow 0}\frac{\cos\theta \sin\theta}{\theta \cos \theta+\sin \theta}\\\\\\= \lim_{\theta \rightarrow 0}\bigg( \Big( \frac{\cos\theta\sin\theta}{\theta\cos\theta+\sin\theta}\Big)^{-1} \bigg)^{-1}\\\\\\=\lim_{\theta \rightarrow 0}\Big(\frac{\theta\cos\theta+\sin\theta}{\cos\theta \sin\theta}\Big)^{-1}\\\\\\=\lim_{\theta \rightarrow 0}\Big(\frac{\theta\cos \theta}{\cos \theta \sin \theta}+\frac{\sin\theta}{\cos\theta\sin\theta} \Big)^{-1}\\\\\\=\lim_{\theta \rightarrow 0}\Big(\frac{\theta}{\sin\theta}+\frac{1}{\cos\theta}\Big)^{-1}\\\\\\ *\lim_{\theta\rightarrow0}\Big(\frac{\theta}{\sin \theta}\Big)^{-1}=\lim_{\theta\rightarrow 0}\frac{\sin\theta}{\theta}=1 *\\\\\\= \Bigg( \lim_{\theta\rightarrow 0}\frac{\theta}{\sin\theta}+\lim_{\theta \rightarrow 0}\frac{1}{\cos\theta}\Bigg)^{-1}\\\\\\=\big(1+1)^{-1}=\frac{1}{2}
\end{equation*}
so sorry about the bad latex! I used that codecogs site, and I guess it is just a tad different?
hey guys, this is my first post, and absolutely love this site! Anyways, I've been studying some calculus to get ahead of the game before university and I came across a few limit questions that I solved, but I don't really know HOW I solved them and by that, I mean, with some of the substitutions, I got some limits that seem intuitive to me, but I don't really know why they are that way.. Forgive my latex if it doesn't end up lookin all pretty, I am pretty new to it. So I was hoping anybody could take a look at these 3 questions and let me know whatsup?
1) \begin{equation*}
\lim_{x\rightarrow \infty}x\,{\sin{\frac{1}{x}}}\quad \text{let}\,a=\frac{1}{x}\\\\\quad\therefore \lim_{x\rightarrow\infty}a= \lim_{a \rightarrow 0}a=0\\\\\qquad \therefore \lim_{x\rightarrow\infty}x\sin\frac{1}{x}=\lim_{a \rightarrow 0}\frac{\sin(a)}{a}=1\\\\\quad\therefore\lim_{x \rightarrow \infty}x\sin{\frac{1}{x}}=1
\end{equation*}
2) \begin{equation*}
\lim_{x\rightarrow 1}\frac{\sin(x-1)}{x^2+x-2}\\\\=\lim_{x\rightarrow1}\frac{\sin(x-1)}{(x+2)(x-1)}\\\\\text{let}\,a=x-1\qquad \therefore\,a+3=x+2\\\\ *\lim_{x\rightarrow 1}(x-1)=0\Rightarrow \lim_{a\rightarrow0}a=0\\\\ \therefore \lim_{x\rightarrow}\frac{\sin(x-1)}{(x+2)(x-1)}=\lim_{a\rightarrow0}\frac{\sin(a)}{a(a+3)}\\\\=(\lim_{a\rightarrow 0}\frac{1}{a+3}) (\lim_{a\rightarrow 0}\frac{\sin(a)}{a})\\\\=\frac{1}{3}
\end{equation*}
\begin{equation*}
\lim_{\theta \rightarrow 0}\frac{\sin\theta}{\theta+\tan \theta}\\\\\\=\lim_{\theta \rightarrow 0}\frac{\cos\theta \sin\theta}{\theta \cos \theta+\sin \theta}\\\\\\= \lim_{\theta \rightarrow 0}\bigg( \Big( \frac{\cos\theta\sin\theta}{\theta\cos\theta+\sin\theta}\Big)^{-1} \bigg)^{-1}\\\\\\=\lim_{\theta \rightarrow 0}\Big(\frac{\theta\cos\theta+\sin\theta}{\cos\theta \sin\theta}\Big)^{-1}\\\\\\=\lim_{\theta \rightarrow 0}\Big(\frac{\theta\cos \theta}{\cos \theta \sin \theta}+\frac{\sin\theta}{\cos\theta\sin\theta} \Big)^{-1}\\\\\\=\lim_{\theta \rightarrow 0}\Big(\frac{\theta}{\sin\theta}+\frac{1}{\cos\theta}\Big)^{-1}\\\\\\ *\lim_{\theta\rightarrow0}\Big(\frac{\theta}{\sin \theta}\Big)^{-1}=\lim_{\theta\rightarrow 0}\frac{\sin\theta}{\theta}=1 *\\\\\\= \Bigg( \lim_{\theta\rightarrow 0}\frac{\theta}{\sin\theta}+\lim_{\theta \rightarrow 0}\frac{1}{\cos\theta}\Bigg)^{-1}\\\\\\=\big(1+1)^{-1}=\frac{1}{2}
\end{equation*}
so sorry about the bad latex! I used that codecogs site, and I guess it is just a tad different?
Last edited: