Gain margin - control and automation

AI Thread Summary
Gain margin indicates how much the open loop gain of a control system can increase before it becomes unstable, with a negative gain margin suggesting potential instability. Although the controller gain is fixed post-design, variations in the plant parameters can impact the overall system stability. Factors such as AC mains voltage fluctuations and maintenance schedules of components like motors can alter these parameters during operation. This highlights the importance of designing controllers to accommodate potential uncertainties in the plant. Understanding these dynamics is crucial for maintaining system stability in real-time operations.
LM741
Messages
130
Reaction score
0
hi alll!
just a quick one.

You know when you design a controller - you go and plot the open loop transmission, L(jw) on a nichols plot, where L(jw) = C(jw)H(jw) P(jw)
where P and C are the plant and controller respectively. You then 'manipulate' this plot (i.e. vary your controller) until your design specs are met. My question is once you have a gain margin - what does this actually tell us - say we have gain margin of -5dB.
does this tell us that our controller gain can only increase by 5dB before the system bcomes unstable (assuming the system was already stable).
The thing i don't get is that our controller gain is fixed and doesn't change after we design it! so which gain (the controller or plant or H(hw) ) does the gain margin put a limit on?
think i might be missing something...

thanks!
 
Engineering news on Phys.org
If the gain margin is 5 dB, this means the open loop gain of the system can only increase by 5 dB before going unstable.
Your controller gain may not change, but a change in the parameters of the plant will throw everything off.
Basically, the higher the gain margin, the less likely a change in systems parameters will affect stability.
 
ok - cool - but these 'parameters' of the plant - what exactly are these and do they keep changing whilst the system is operating? SO the characteristics of the plant CAN change whilst it is operating?
This isn't plant uncertainty is it? - which is why we need a controller to compensate for this uncertainty?
think I've got it - if you could just confirm.
thanks
 
Anything that varies the transfer function can affect your gain (or phase) margin. Like, the AC mains voltage changing within tolerances in the plant will affect the startup time of AC motors. And where the motor shafts are in their periodic maintenance lubrication schedule will affect startup and operating speed under load.
 
thanks
...
 
Hey guys. I have a question related to electricity and alternating current. Say an alien fictional society developed electricity, and settled on a standard like 73V AC current at 46 Hz. How would appliances be designed, and what impact would the lower frequency and voltage have on transformers, wiring, TVs, computers, LEDs, motors, and heating, assuming the laws of physics and technology are the same as on Earth?
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...

Similar threads

Back
Top