Gas Dynamic to Acoustic wave equation

Trevorman
Messages
20
Reaction score
2

Homework Statement


Derive from the formulas
##\frac{D^\pm}{Dt}(u \pm F) = 0##

where
##\frac{D^\pm}{Dt} = \frac{\partial}{dt} + ( u \pm c) \frac{\partial}{\partial x}##
the one-dimensional wave equation in the acoustical limit.

\begin{cases}
u << c\\
c \approx c0 = const\\
F = \frac{2c}{\gamma-1}
\end{cases}

Homework Equations


The answer should be
## \frac{1}{c_0^2} \frac{\partial^2 p}{\partial t^2} = \frac{\partial^2 p}{\partial x^2}##
where
##c_0 = \sqrt{\frac{\gamma p_0}{\rho_0}}##

The Attempt at a Solution


Expanding
##\frac{D}{Dt} = \frac{\partial}{\partial t}+\frac{\partial u}{\partial x} \pm \frac{\partial c}{\partial x}##

Now combining equations
##\left( \frac{\partial}{\partial t}+\frac{\partial u}{\partial x} \pm\frac{\partial c}{\partial x} \right) \cdot (u \pm F) = 0 \Rightarrow##
##\Rightarrow\dot{u} \pm\dot{F} + uu^\prime + Fu^\prime + uc^\prime +Fc^\prime = 0 ##

Since ##c = c_0 = const## and ##u<<c \Rightarrow uc^\prime \approx 0 ##, the quadratic terms are neglected. ##\dot{F} = 0## ,and substituting F
##\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{2c}{\gamma-1} \frac{\partial c }{\partial x} = 0##

This should be done by substituting

##c=c_0 + c^\prime##
##u=u^\prime##
##p = p_0 + p^\prime##
##\rho = \rho_0 + \rho^\prime##
and by neglecting small terms as ##u^\prime c^\prime##

I do not know how to proceed with this example.

Thank you!
 
Physics news on Phys.org
This is nothing but the characteristic form of the 1-D gas equations. No perturbations are necessary.
1) Write out the compressible Euler equations in 1D
2) Note that c^2=\gamma p/rho
3) The flow you're looking for is isotropic so p=A\rho^{\gamma}
4) Play.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top