A Gauge invariance and covariant derivative

spaghetti3451
Messages
1,311
Reaction score
31
Consider the covariant derivative ##D_{\mu}=\partial_{\mu}+ieA_{\mu}## of scalar QED.

I understand that ##D_{\mu}\phi## is invariant under the simultaneous phase rotation ##\phi \rightarrow e^{i\Lambda}\phi## of the field ##\phi## and the gauge transformation ##A_{\mu}\rightarrow A_{\mu}+\frac{1}{e}(\partial_{\mu}\Lambda)## of the vector potential ##A_{\mu}##.I was wondering if the phase rotation and the gauge transformation are related in any way? Does the gauge transformation necessarily lead to the phase rotation of the field?
 
Physics news on Phys.org
The correct transformation for the gauge field is ## A_\mu \to A_\mu - \frac 1 e (\partial_\mu \Lambda) ##.

## D_\mu \phi ## is not invariant under ## \phi \to e^{i\Lambda}\phi ## and ## A_\mu \to A_\mu - \frac 1 e (\partial_\mu \Lambda) ##. It transforms like ## \phi ## itself, i.e. ## D_\mu \phi \to e^{i\Lambda} D_\mu \phi ##. The point is that this will make ## D_\mu \phi D^\mu \phi^* ## invariant.

The gauge you use is a choice you make in a particular problem, like a coordinate system. You can choose any gauge you want, but you can't use one choice for some quantities and another choice for others. So all gauge dependent quantities should transform when you change gauge.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top